
9368 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

FedCache: A Knowledge Cache-Driven
Federated Learning Architecture for Personalized

Edge Intelligence
Zhiyuan Wu , Member, IEEE, Sheng Sun , Yuwei Wang , Member, IEEE, Min Liu , Senior Member, IEEE,

Ke Xu , Fellow, IEEE, Wen Wang , Xuefeng Jiang , Bo Gao , Member, IEEE, and Jinda Lu

Abstract—Edge Intelligence (EI) allows Artificial Intelligence
(AI) applications to run at the edge, where data analysis and
decision-making can be performed in real-time and close to data
sources. To protect data privacy and unify data silos distributed
among end devices in EI, Federated Learning (FL) is proposed for
collaborative training of shared AI models across multiple devices
without compromising data privacy. However, the prevailing FL
approaches cannot guarantee model generalization and adapta-
tion on heterogeneous clients. Recently, Personalized Federated
Learning (PFL) has drawn growing awareness in EI, as it enables
a productive balance between local-specific training requirements
inherent in devices and global-generalized optimization objectives
for satisfactory performance. However, most existing PFL methods
are based on the Parameters Interaction-based Architecture (PIA)
represented by FedAvg, which suffers from unaffordable communi-
cation burdens due to large-scale parameters transmission between
devices and the edge server. In contrast, Logits Interaction-based
Architecture (LIA) allows to update model parameters with logits
transfer and gains the advantages of communication lightweight

Manuscript received 31 August 2023; revised 5 November 2023; accepted 31
January 2024. Date of publication 5 February 2024; date of current version 3
September 2024. This work was supported in part by the National Key Research
and Development Program of China under Grant 2021YFB2900102, in part by
the National Natural Science Foundation of China under Gant 62072436, in part
by the Innovation Capability Support Program of Shaanxi under Grant 2023-CX-
TD-08, in part by Shaanxi Qinchuangyuan “scientists+engineers” team under
Grant 2023KXJ-040, and in part by the Innovation Funding of ICT, CAS under
Grant E261080. Recommended for acceptance by X. Yuan. (Corresponding
author: Yuwei Wang.)

Zhiyuan Wu, Wen Wang, and Xuefeng Jiang are with the Institute of Com-
puting Technology, Chinese Academy of Sciences, Beijing 100045, China, and
also with the University of Chinese Academy of Sciences, Beijing 101408,
China (e-mail: wuzhiyuan22s@ict.ac.cn; wangwen22s@ict.ac.cn; jiangxue-
feng21b@ict.ac.cn).

Sheng Sun and Yuwei Wang are with the Institute of Computing Tech-
nology, Chinese Academy of Sciences, Beijing 100045, China (e-mail: sun-
sheng@ict.ac.cn; ywwang@ict.ac.cn).

Min Liu is with the Institute of Computing Technology, Chinese Academy
of Sciences, Beijing 100045, China, and also with Zhongguancun Laboratory,
Beijing 100086, China (e-mail: liumin@ict.ac.cn).

Ke Xu is with the Department of Computer Science and Technology, Tsinghua
University, Beijing 100190, China, and also with Zhongguancun Laboratory,
Beijing 100086, China (e-mail: xuke@tsinghua.edu.cn).

Bo Gao is with the School of Computer and Information Technology, Engi-
neering Research Center of Network Management Technology for High-Speed
Railway of Ministry of Education, Beijing Jiaotong University, Beijing 100082,
China (e-mail: bogao@bjtu.edu.cn).

Jinda Lu is with the School of Information Science and Technology, Uni-
versity of Science and Technology of China, Hefei 101127, China (e-mail:
lujd@mail.ustc.edu.cn).

Our code and DEMO are available at https://github.com/wuzhiyuan2000/
FedCache.

Digital Object Identifier 10.1109/TMC.2024.3361876

and heterogeneous on-device model allowance compared to PIA.
Nevertheless, previous LIA methods attempt to achieve satisfac-
tory performance either relying on unrealistic public datasets or
increasing communication overhead for additional information
transmission other than logits. To tackle this dilemma, we propose
a knowledge cache-driven PFL architecture, named FedCache,
which reserves a knowledge cache on the server for fetching per-
sonalized knowledge from the samples with similar hashes to each
given on-device sample. During the training phase, ensemble dis-
tillation is applied to on-device models for constructive optimiza-
tion with personalized knowledge transferred from the server-side
knowledge cache. Empirical experiments on four datasets demon-
strate that FedCache achieves comparable performance with state-
of-art PFL approaches, with more than two orders of magnitude
improvements in communication efficiency.

Index Terms—Distributed architecture, edge computing,
personalized federated learning, knowledge distillation, commu-
nication efficiency.

I. INTRODUCTION

EDGE Intelligence (EI) is an emerging technology for the
marriage of edge computing and Artificial Intelligence

(AI), enabling real-time data analysis and decision-making close
to data sources instead of relying solely on the cloud [1].
With the proliferation of mobile devices and the unprecedented
amount of data generated by ubiquitous devices, EI is playing
an increasingly important role in many areas such as unmanned
vehicles [2], smart homes [3], recommender systems [4], etc.
However, conventional centralized EI paradigms require upload-
ing raw data for training pervasive AI models, raising privacy
concerns about sensitive data leakage.

Federated Learning (FL) is a privacy-preserving distributed
learning paradigm that enables multiple data owners to collab-
oratively train AI models without sharing owners’ private data.
Due to the benefits of data localization and privacy protection,
FL has shown great potential in various EI applications, such as
healthcare [5], smart transportation [6], industrial manufactur-
ing [7], etc. Unfortunately, the prevailing FL approaches [8],
[9] require all participating devices (named clients) to share
a uniform model, which is extremely difficult to deploy and
generalize to all devices because of the inherent characteristics
of device variation in terms of data heterogeneity, resources
limitation, task differentiation, etc [10], [11]. Recent studies pay
much attention to Personalized Federated Learning (PFL) [11]

1536-1233 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8925-4896
https://orcid.org/0000-0002-0260-2692
https://orcid.org/0000-0002-3228-7371
https://orcid.org/0000-0003-2824-9601
https://orcid.org/0000-0003-2587-8517
https://orcid.org/0009-0000-3788-1348
https://orcid.org/0000-0002-0211-9123
https://orcid.org/0000-0002-4377-2970
https://orcid.org/0009-0009-7322-9942
mailto:wuzhiyuan22s@ict.ac.cn
mailto:wangwen22s@ict.ac.cn
mailto:jiangxuefeng21b@ict.ac.cn
mailto:jiangxuefeng21b@ict.ac.cn
mailto:sunsheng@ict.ac.cn
mailto:sunsheng@ict.ac.cn
mailto:ywwang@ict.ac.cn
mailto:liumin@ict.ac.cn
mailto:xuke@tsinghua.edu.cn
mailto:bogao@bjtu.edu.cn
mailto:lujd@mail.ustc.edu.cn
https://github.com/wuzhiyuan2000/FedCache
https://github.com/wuzhiyuan2000/FedCache

WU et al.: FEDCACHE: A KNOWLEDGE CACHE-DRIVEN FEDERATED LEARNING ARCHITECTURE FOR PERSONALIZED EDGE INTELLIGENCE 9369

Fig. 1. Schematic diagram of personalized federated learning for edge
intelligence.

for addressing the differential training challenges in EI via
building personalized models for individual devices, as shown in
Fig. 1. However, most PFL approaches [12], [13], [14] adopt the
Parameters Interaction-based Architecture (PIA) represented by
FedAvg [8], which requires homogeneity of on-device model
architectures and imposes tremendous communication burden
caused by large-scale parameters exchange between clients and
the server for bandwidth-limited devices [15], [16].

Furthermore, by applying knowledge distillation technol-
ogy [17], [18], [19] to PFL, a series of communication-
lightweight and heterogeneous model-allowable PFL architec-
tures with logits (usually called knowledge) exchange instead
of interacting model parameters are put forward. These archi-
tectures, which we call Logits Interaction-based Architecture
(LIA), bring the benefits of saving orders of magnitude of
communication overhead and training models with heteroge-
neous architectures. Related literatures [16], [20], [21], [22],
[23] fall into two types of architectures based on the granular-
ity of the interacted logits during training: Class-grained Log-
its Interaction-based Architecture (CLIA) and Sample-grained
Logits Interaction-based Architecture (SLIA). Thereinto, SLIA
is drawn more attention since it allows for fine-grained inter-
action of logits for performance guarantee. However, existing
methods based on SLIA endeavor to achieve satisfactory per-
formance either relying on additional client-side training on
unrealistic public datasets [20], [21], or requiring the transfer
of embedded features with non-negligible sizes in addition to
logits [22], [24]. They appear to be unfriendly to devices by
reason of the induction of intensive computation, tremendous
communication, or public datasets reliance, making them un-
suitable for practical applications in EI [25].

In this paper, we develop a novel device-friendly PFL archi-
tecture that is suitable for EI, named knowledge cache-driven
FL architecture (FedCache). FedCache is a novel client-server
interaction paradigm, which maintains a knowledge cache on
the server to store the latest knowledge associated with each
private sample, and applies a customized knowledge cache-
driven personalized distillation technique for on-device model
training. During the initialization process, all private samples
on clients are encoded into hashes via a deep pre-trained neural
network, so as to discern the relational degree among samples
in a privacy-preserving manner. During the training process,
each on-device model is optimized via personalized knowledge

distillation over the ensemble of relevant knowledge whose
corresponding hashes are the R-nearest neighbors of the hash of
the given sample to be optimized on, which is fetched from the
server-side knowledge cache. To our best knowledge, FedCache
is the first Sample-grained Logits Interaction-based Architecture
(SLIA) dispensed with features transmission and public datasets,
ensuring the satisfactory performance of on-device models while
meeting the practical limitations of EI.

In general, we summarize the contributions of our proposed
FedCache as follows:
� Device Friendliness: FedCache is a device-friendly archi-

tecture that enables only small-scale ensemble logits to be
transferred between clients and the server during training
without needing public datasets. Meanwhile, FedCache
supports collaborative training on devices with heteroge-
neous models.

� Scalability: FedCache is a highly scalable architecture for
large-scale devices since it eliminates the need to keep a
cumbersome global model on the server and also enables
asynchronous training, effectively reducing the server-side
computation and client-server synchronization consump-
tion.

� Effectiveness: FedCache is compared with state-of-art
PFL methods with various architectures on four common
datasets. Results confirm that FedCache achieves perfor-
mance comparable to benchmark algorithms while improv-
ing communication efficiency by two orders of magnitude.

II. RELATED WORK

A. Federated Learning for Personalized Edge Intelligence

As a uniform shared model cannot accommodate multiple
clients with diverse tasks and capabilities [10], [26], person-
alization techniques in FL are needed to adapt clients-side
individualized requirements. Specifically, federated multi-task
learning in edge computing [13], [22] allows clients to train
personalized neural networks to accommodate the differentiated
data distribution in their respective tasks. [14] retains historical
personalized models on devices, allowing current models to
distill knowledge from previous models for personalized EI.
[27] leverages a source-free unsupervised domain adaptation
approach to adapt large source-domain models to target data
on devices, while adopting lite residual hypothesis transfer to
save the storage overhead during the adaptation process. In
addition, [28] considers the personalization of accuracy targets
on clients and uses adaptive learning rates to allow clients that
reach the target to exit in advance for saving resources.

Unlike prior works, we focus on the architecture design of
PFL to enable efficient communication as well as asynchronous
training, while also supporting heterogeneous on-device models
without requiring public datasets, aiming to bridge the gap
between PFL and practical applications in EI.

B. Knowledge Distillation in Federated Edge Learning

As noted in [25], knowledge distillation has emerged as an
important technique for addressing challenges in federated edge

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

9370 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

learning. [23], [29] leverage knowledge distillation as a commu-
nication protocol for exchanging model representations among
devices and the edge server, enabling communication-efficient
training over heterogeneous models. [30], [31] transfer knowl-
edge from edge models to differentiated on-device models in FL
under device heterogeneity. [14], [22] conduct distillation-based
personalized FL optimization over on-device models to support
personalized EI.

However, the above approaches cannot achieve satisfactory
performance in a device-friendly manner, since they either need
features/model parameters transfer or rely on public data during
the training process. In contrast, our FedCache architecture
solves all the above-mentioned problems and enables practical
use in personalized EI.

III. PRELIMINARY AND MOTIVATION

A. Background and Notations

We investigate PFL for EI, where distributed devices (named
clients) collaboratively train C-class classification models co-
ordinated by an edge server (named the server) while keeping
private data on devices. We assume that K clients participate
in PFL, and each client k ∈ {1, 2, . . .,K} occupies a private

dataset Dk :=
⋃Nk

i=1 {(Xk
i , y

k
i)}, where Nk is the number of

samples in Dk, and Xk
i , yki are the i-th data and label in

Dk, respectively. Each device k owns a personalized model
Mk := (W k, fk) with possible different model parameters or
architectures, where W k is the model parameters of Mk and
fk(·) is the non-linear mapping determined by Mk. The goal of
each device is to improve the User model Accuracy (UA) [13] of
its personalized model on its private data as much as possible.
The optimization objective of the PFL system is to maximize
the Maximum Average UA (MAUA) of all clients, that is to
achieve generally satisfactory performance on each client. The
main notations and descriptions can be referred to Table I.

B. Practical Limitations in Edge Intelligence

We summarize the main practical limitations that PFL archi-
tectures need to overcome when deploying in EI:
� Device Heterogeneity: Considering the different hardware

configurations of end devices such as central processing
units, memory resources, and energy status, personalized
models need to be adopted among devices to fit their
specific characteristics [32], [33].

� Communication Efficiency: Due to the limited wireless
network bandwidth between edge servers and end devices,
they are not capable of large-scale communication [16],
[32].

� Data Privacy: Devices are reluctant to share their local
data with edge servers because of privacy concerns or data
protection regulations [34], [35]. Hence, it is difficult to
obtain information about users’ local data.

� Asynchronous Optimization: The high synchronization
overhead caused by varying computation tasks, capabil-
ities, and communication delays of different devices im-
pedes model update [36], [37].

TABLE I
MAIN NOTATIONS WITH DESCRIPTIONS

C. Overview of PFL Architectures

1) PFL Architecture Based on Parameters Interaction: For
Parameters Interaction-based Architecture (PIA), each client
periodically uploads locally-trained model parameters to the
server and updates the local model with the server-downloaded
model parameters obtained from aggregating local models. In
PFL with PIA, clients tend to upload only part of its model
parameters to preserve local adaptation capabilities [13], [14].
Therefore, filtered parameters aggregation weighted by local
sample numbers is performed on the server side, that is:

W ∗ =
Nk

K∑
l=1

N l

· filter(W k), (1)

where filter(·) filters out partial on-device model parameters
to be uploaded to the server, and W ∗ represents the aggregated
model parameters on the server.

Although PIA can preserve the personalization capabilities
of on-device models by filtering model parameters, transmit-
ting large-scale parameters for aggregation is still too costly

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

WU et al.: FEDCACHE: A KNOWLEDGE CACHE-DRIVEN FEDERATED LEARNING ARCHITECTURE FOR PERSONALIZED EDGE INTELLIGENCE 9371

for devices with limited communication resources [16], [32].
Moreover, PIA demands a high degree of homogeneity among
on-device model architectures during the aggregation process,
which is hard to achieve in edge intelligence scenarios where het-
erogeneous devices with various hardware-related constraints
are prevalent [38], [39].

2) PFL Architecture Based on Logits Interaction: For Log-
its Interaction-based Architecture (LIA), each client performs
distillation-based optimization on the global logits downloaded
from the server, without parameters transmission during train-
ing [22], [23], [24], [29], [40], [41]. Depending on the gran-
ularity of interacted logits, existing PFL architectures can be
divided into two categories: class-grained logits interaction and
sample-grained logits interaction.

1) Class-grained Logits Interaction-based Architecture
(CLIA): For CLIA, the output of each sample Xk

i from client
k needs to approach the global average logits calculated by all
samples with the same label yki from all other clients except
client k [23], that is:

argmin
Wk

∑
(Xk

i ,y
k
i)∈Dk

[
LCE(σ0(f

k(Xk
i)), y

k
i)

+ γ · LCE

(
σ0(f

k(Xk
i)), σ0

(∑K
l=1 F

l,yk
i − F k,yk

i

K − 1

))]
,

(2)

where σ0(·) is the softmax mapping, γ is the distillation weight-
ing factor, and LCE(·) denotes the cross-entropy loss. F l,yl

i is
the average logits calculated by the samples with the same label
yli in client l, i.e.

F l,yl
i = E

(Xk
i ,y

l
i)∈Dk∧yl

i=yk
i

fk(Xk
i). (3)

Although CLIA supports model heterogeneity with
lightweight communication, it only enables C types of
logits to be learned by each client. As clients learn very little
additional server-side information compared to standalone, this
PFL design is prone to reaching a performance limit.

2) Sample-grained Logits Interaction-based Architecture
(SLIA): For SLIA, the number of logits learned by on-device
models are related to the number of samples [22], [24], [29], [40],
[41]. Such architecture generally requires inevitable compro-
mises of importing public datasets or increasing communication
overhead, and can be classified into two forms.
� SLIA with Features Exchange (SLIA-FE): In SLIA-FE, the

model parameters of client k are divided into the feature
extractor part W k

e and the predictor part W k
p , where the

prediction mapping of the feature extractor is denoted
as fk

e (·). The server keeps only a large-scale classifier
WS with the corresponding prediction mapping fS(·).
Typically, the model on the server is updated with a linear
combination of cross-entropy loss LCE(·) and Kullback-
Leibler divergence loss KL(·) depending on clients-side
uploaded features and logits [22], [24], [40], which can be

expressed as follows:

argmin
WS

∑
(Xk

i ,y
k
i)∈Dk

[LCE(σ0(f
S(fk

e (X
k
i)︸ ︷︷ ︸

uploaded features

)), yki)

+λ ·KL(σ0(f
S(fk

e (X
k
i)︸ ︷︷ ︸

uploaded features

))||σ1(fk(Xk
i)︸ ︷︷ ︸

uploaded logits

))],

(4)
where σ1(·) is the transform mapping for local logits, and
λ is the distillation weighting factor. Contrastively, client
k performs local model parameters update with the server-
side downloaded global logits, and optimizes the following
loss function:

argmin
Wk

∑
(Xk

i ,y
k
i)∈Dk

⎡
⎢⎣LCE(σ0(f

k(Xk
i)), y

k
i) + μ ·KL

×

⎛
⎜⎝σ0(f

k(Xk
i))||σ2

⎛
⎜⎝ fS

⎛
⎜⎝ fk

e (X
k
i)︸ ︷︷ ︸

uploaded features

⎞
⎟⎠

︸ ︷︷ ︸
downloaded global logits

⎞
⎟⎠
⎞
⎟⎠
⎤
⎥⎦,

(5)

where σ2(·) is the transform mapping for global logits, and
μ is the distillation weighting factor. Although SLIA-FE
allows for heterogeneous on-device models without param-
eters transmission, participants need to agree on the feature
dimensionality. Besides, since the feature dimensionality
of high-resolution images and long sequential data is often
high, the overhead of features transmission is still signifi-
cant for devices.

� SLIA with Public Dataset (SLIA-PD): For SLIA-PD, client
k aims to approach the average logits of all clients on a
given sample (XO

i , yOi) in the public datasetDO [29], [41],
that is:

argmin
Wk

∑
(XO

i ,yO
i)∈DO

LCE

(
σ0(f

k(XO
i)),

σ0

(
1

K

∑
l

f l(XO
i)

U

))
, (6)

where U is a hyper-parameter that controls the distribution
of ensembled logits. We claim that SLIA-PD not only fur-
ther relaxes the constraints on model architectures across
clients, but also enables exchanges of only logits with
minuscule sizes during training, resulting in significantly
lower communication overhead compared to previously
mentioned architectures. However, SLIA-PD relies on a
public dataset whose distribution should be close to private
data on clients [42]. As it is unlikely to collect satisfactory
public data without knowing data distribution of clients,
this architecture is impractical in reality.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

9372 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

TABLE II
COMPARISON OF FEDCACHE WITH OTHER PFL ARCHITECTURES IN TERMS OF MODEL HETEROGENEITY SUPPORTABILITY, COMMUNICATION EFFICIENCY,

DEPENDENCY ON PUBLIC DATA, WHETHER ENABLE ASYNCHRONOUS OPTIMIZATION, AND COMMUNICATION PROTOCOL

D. Motivation

From the above analysis, we can conclude that existing PFL
architectures cannot realize well-satisfied trade-offs among sys-
tem performance, resource efficiency and without relying on
public datasets, even if LIA gains advantages of remarkably
reducing communication burden and tolerating heterogeneous
models training over frequently-used PIA. Motivated by the
analysis above about PFL architectures, we attempt to answer
the following question: how can a personalized federated learn-
ing architecture be designed to allow only logits transmis-
sion during the training process without the need for a public
dataset, meanwhile significantly outperforming class-grained
logits interaction-based architecture? Concisely, our answer is
to develop a knowledge cache-driven federated learning archi-
tecture with personalized distillation to optimize local models
on clients.

To optimize on-device models via knowledge distillation, we
propose to keep a knowledge cache on the server, which serves
as the source of sample-grained knowledge for personalized
distillation without public datasets. Specifically, the server-side
knowledge cache keeps track of the latest knowledge of samples
and leverages an information retrieval mechanism to search
out the most relevant knowledge for each sample from cached
knowledge. The searched knowledge from other clients is ac-
companied by reliable and effectual relevant representations,
and is transferred to clients from which the sample originated
for constructive distillation-based optimization. On this basis,
sample-grained logits interaction can be realized between the
server and clients to ensure that on-device models learn sufficient
personalized knowledge.

Based on the above insights, FedCache is proposed, whose
comparisons with other FL architectures are shown in Table II.
Compared to existing architectures, FedCache supports transfer-
ring sample-level logits without the assistance of public datasets
during training, achieving superior performance compared to
CLIA and overcoming the drawbacks of previous SLIA. Be-
sides, FedCache is a device-friendly architecture that enables
complete model heterogeneity among clients, unlike other ex-
isting approaches either requiring partial model homogeneity or
agreeing on the same feature dimension. In addition, FedCache
supports asynchronous interaction of logits required for PFL
systems with devices of different capabilities, since it does not

Fig. 2. Functional module diagram of FedCache.

need to synchronously aggregate logits from different clients
unlike previous methods [23], [29], [41].

IV. KNOWLEDGE CACHE-DRIVEN PERSONALIZED FEDERATED

LEARNING

A. System Design

The functional module diagram of FedCache is displayed
in Fig. 2, which consists of a server with three functional
modules: (server-client) communication, (knowledge) ensem-
ble, knowledge cache; and K clients with five functional mod-
ules: (client-server) communication, (knowledge) distillation,
data, model, and (sample) encoder. Specifically, the ensemble
module combines the fetched knowledge from the knowledge
cache to obtain personalized knowledge to be distilled over
clients; the knowledge cache module is our designed self-
organizing knowledge storage structure that facilitates fetch-
ing each client’s relevant knowledge on the server side; the
model module extracts knowledge from local data, and conducts
model updates under the guidance of the distillation module;
in addition, the encoder module encodes private data into hash
values to initialize the knowledge cache. The encoder should
be efficient, robust, and discriminative, ensuring that the hash
values of local samples can be computed quickly and reliably
reflect the semantic similarity among samples.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

WU et al.: FEDCACHE: A KNOWLEDGE CACHE-DRIVEN FEDERATED LEARNING ARCHITECTURE FOR PERSONALIZED EDGE INTELLIGENCE 9373

Fig. 3. Sample matching results on FashionMNIST dataset with R = 3.

During the initialization phase, the generated hash codes
on clients are uploaded to the server in a single pass. Then,
HNSW [43] is performed in the server-side knowledge cache,
aiming to retrieve R most relevant samples for matching each
sample measured by cosine similarity of hash values. Fig. 3
displays the sample matching results on FashionMNIST [44]
dataset. As shown, the matched samples are very similar to the
original sample, making the knowledge extracted from them
beneficial to client-side distillation on the original sample. Dur-
ing the training phase, each logits and index of private samples
are uploaded to the server in each communication round. Then,
R best-matching knowledge with the highest hash similarity
in the knowledge cache for each sample is fetched based on
the pre-established similarity relations, followed by knowledge
ensemble and then knowledge communication to corresponding
clients for local distillation. As the distillation phase only re-
lies on highly relevant knowledge of clients’ respective private
data, the resulting model is locally adaptable and powerful for
personalization tasks. We will introduce the key procedures of
FedCache in the subsequent subsections.

B. Knowledge Cache

The knowledge cache on the server is proposed to asyn-
chronously fetch relevant knowledge for an arbitrary local
sample with controllable computation complexity, where the
corresponding hash values of samples from which relevant
knowledge is extracted should be one of theR-nearest neighbors
of the hash value of the original sample. Guided by the above
design, we preserve multiple pairs in the knowledge cache,
including label-to-index pairs (LI), index-to-knowledge pairs
(IK), index-to-hash pairs (IH), and index relations pairs (IR),
where each pair enables mapping the first element to the second
element. On this basis, the knowledge cache is of two main
phases: initialization and training.

The initialization process includes the following steps:
� Pairs initialization: The uploaded hash value hk

i corre-
sponding to each sample index (k, i) is stored in IH . In

addition, indexes are added to LI according to their corre-
sponding label classes, and the knowledge corresponding
to each given index is initialized to zeros in IK, i.e.

IH(k, i)← hk
i , (7)

LI(yki)← LI(yki) ∪ {(k, i)}, (8)

IK(k, i)← (0, . . ., 0︸ ︷︷ ︸
Czeros

). (9)

As LI only allows relations to be built within the sample
index range of the same label class, it is expected that
the number of candidate samples used for matching will
be reduced, improving the computation efficiency of the
relations establishment in the following step.

� Build relations: For each given sample index (k, i), we re-
late it to R indexes {(l1, j1), (l2, j2), . . ., (lR, jR)} whose
hash values have the greatest cosine similarity to the hash
value of the given sample among all the candidate hashes,
i.e.

argmax
(l1,j1),(l2,j2),...,(lR,jR)

R∑
m=1

cos(IH(k, i), IH(lm, jm)),

s.t.

⎧⎪⎪⎨
⎪⎪⎩

ln1
�= ln2

∨ jn1
�= jn2

, ∀n1, n2 ∧ n1 �= n2,
(k, i) ∈ LI(y∗) ∧ (lm, jm) ∈ LI(y∗), ∃y∗,
n1, n2,m ∈ {1, 2, . . ., R},
y∗ ∈ {1, 2, . . ., C},

(10)
during which HNSW [43] is adopted to achieve the R-
nearest neighbors retrieval. Then, the retrieved results re-
lated to each sample index are saved in IR for subsequent
access, i.e.

IR(k, i)← {(l1, j1), (l2, j2), . . ., (lR, jR)} (11)

During the training process, the following steps should be
performed for each given sample index:
� Knowledge fetching: The most relevant knowledge can be

fetched in the knowledge cache KC based on a provided
sample index: for a newly uploaded sample index (k, i),
the corresponding knowledge is obtained and returned
according to 1) IR which stores relevant sample indexes
of (k, i), and 2) IK which transforms relevant indexes to
knowledge, that is:

KC(hk
i ; k, i) = IK(IR(k, i)). (12)

As knowledge fetching requires only the clients request-
ing knowledge to be online, clients can asynchronously
perform fetched knowledge-based optimization.

� Knowledge update: IK(k, i) is updated with the knowl-
edge zki corresponding to the given sample index (k, i), so
that the latest knowledge can be fetched on the next access,
i.e.

IK(k, i)← zki . (13)

C. Knowledge Cache-Driven Personalized Distillation

We optimize on-device models with personalized federated
distillation, where knowledge of samples similar to each client’s
private data is fetched from the knowledge cache. On this basis,

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

9374 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

Fig. 4. Overview of executing procedure of FedCache. (1) Hash encoding and uploading. (2) Knowledge cache initialization. (3) Knowledge extraction and
uploading. (4) Knowledge fetching. (5) Knowledge ensemble and distributing. (6) Knowledge update. (7) Knowledge acceptance and distillation.

each client performs ensemble distillation on fetched knowledge
for constructive optimization of on-device models. Specifically,
a pre-trained deep neural network fh(·) is adopted as an en-
coder to generate the hash values of samples on clients during
initialization, i.e.

hk
i = fh(Xk

i), (14)

and such hash values with corresponding sample indexes and
labels are uploaded to the server for initializing the knowledge
cache according to (7), (8), (9), (10), and (11).

During training on each given sample (Xk
i , y

k
i), client k

first extracts knowledge zki on Xk
i , and then uploads zki with

corresponding sample index (k, i) to the server, where:

zki = fk(Xk
i). (15)

Then, the R knowledge related to sample index (k, i) is fetched
from the knowledge cache KC according to (12), that is,

(zrki)1, (zr
k
i)2, . . ., (zr

k
i)R = KC(hk

i ; k, i), (16)

where (zrki)s is the s-th knowledge fetched for the given sample
index (k, i). The fetched knowledge is ensembled in an average
manner, which can be expressed as:

zrki =
1

R

R∑
s=1

(zrki)s. (17)

Subsequently, the ensembled knowledge is distributed to client
k for performing distillation-based local model optimization

weighted by factor β, which is defined as follows:
argmin

Wk

Jk(W k)

= argmin
Wk

∑
(Xk

i ,y
k
i)∈Dk

[LCE(τ(f
k(Xk

i)), y
k
i)

+β ·KL(τ(fk(Xk
i))||τ(zrki))].

(18)

D. Formal Description of FedCache

The overview of executing procedure of FedCache is shown
in Fig. 4, and the execution processes of FedCache on client
k and the server are respectively formulated in Algorithms 1
and 2. From the overall perspective, we allow personalized
local models on devices to distill ensembled knowledge on
the samples similar to private data with the assistance of the
server-side knowledge cache.

Specifically, FedCache consists of the following steps:
� Hash Encoding and Uploading: For each sample from a

given client, a hash value is encoded based on the pre-
trained local encoder according to (14), (Algorithm 1, line
3). This hash value is uploaded to the server along with the
corresponding label and sample index (Algorithm 1, line
4). As the encoder is a deep pre-trained neural network
with a large number of superimposed non-linear mapping
and the dimensionality of the output code is much smaller
than that of data, sharing hash values with the server is
privacy-preserving.

� Knowledge Cache Initialization: The server accepts the
uploaded information from clients (Algorithm 2, line 3)
and establishes relations between sample indexes in the
knowledge cache according to (7), (8), (9), (10), and (11),
such that each sample can be indexed to R-related samples
(Algorithm 2, line 4–6).

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

WU et al.: FEDCACHE: A KNOWLEDGE CACHE-DRIVEN FEDERATED LEARNING ARCHITECTURE FOR PERSONALIZED EDGE INTELLIGENCE 9375

Algorithm 1: FedCache on Client k.

� Knowledge Extraction and Uploading: Clients extract log-
its (Algorithm 1, line 9) and upload logits with corre-
sponding sample indexes to the server (Algorithm 1, line
10). This step is an alternative to the parameters/features
uploading step of PIA and SLIA-FE. As the size of the
logits and sample indexes are several orders of magnitude
smaller than that of the model parameters or features, the
communication burden can be significantly reduced.

� Knowledge Fetching: The server accepts the sample in-
dexes uploaded by the clients (Algorithm 2, line 10), and
fetches R-nearest matching knowledge from the knowl-
edge cache based on pre-established sample index relations
(Algorithm 2, line 11). This step enables on-device models
to obtain sample-level granularity of knowledge without
being limited by the number of classes.

� Knowledge Ensemble and Distributing: The fetched
knowledge is ensembled on the server according to (17)
(Algorithm 2, line 12), and is subsequently distributed to
corresponding clients (Algorithm 2, line 13). This step is
also communication-efficient since only logits are trans-
ferred between the server and clients.

� Knowledge Update: The stored knowledge in the knowl-
edge cache is updated based on the newly-uploaded knowl-
edge (in Algorithm 2, line 10) according to (13). (Algo-
rithm 2, line 14)

� Knowledge Acceptance and Distillation: The clients re-
ceive the ensembled knowledge distributed from the server
(Algorithm 1, line 11) and optimize client-side local mod-
els according to (18) (Algorithm 1, lines 12–13). This step
can be performed asynchronously on each client without
waiting for other clients to finish their previous steps.

V. EXPERIMENTS

A. Experimental Setup

1) Datasets and Preprocessing: We conduct experiments
on four common datasets, MNIST [45], FashionMNIST [44],

Algorithm 2: FedCache on the Server.

CIFAR-10 [46] and CINIC-10 [47]. Following [22], we adopt
the data partitioning scheme in FedML [48], which uses a
hyperparameter α (α > 0) to control the degree of local data
distribution differentiation among devices. As α decreases, the
data distributions among devices show greater degrees of hetero-
geneity. To evaluate FedCache on personalized data, we use the
same data partitioning strategy for both the complete training
and testing datasets, ensuring that the label distributions of
training and testing local data are consistent on each device. In
all of our main experiments, we partition each dataset into 300
non-independent identically distributed copies for training and
testing on K = 300 different clients, and the hyper-parameter α
is set to 1.0. Each client runs locally for one epoch before model
aggregation or feature/knowledge transfer.

2) Benchmarks and Criteria: To fully demonstrate the effec-
tiveness of FedCache, we compare it with the state-of-art PFL
methods with various architectures, including FMTL [13] and
pFedMe [12] based on PIA, FedDKC [24] and FedICT [22]
based on SLIA-FE, and FD [23] based on CLIA. Among all
the architectures, SLIA-PD is discarded because of its imprac-
tical reliance on public datasets. The precision of benchmark
algorithms is measured by Maximum Average User model Ac-
curacy [13] (MAUA). Moreover, we denote the communication
overhead to reach a given average UA acc as acc@, measuring
system communication efficiency with different acc@ according
to the actual system performance, as shown in Table III. We also
calculate the speed-up ratio of each method by comparing the ra-
tio of communication overhead between the one with the highest
communication overhead of all benchmark algorithms and this
method under the same experimental settings. In addition, our

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

9376 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

TABLE III
acc@ USED IN DIFFERENT EXPERIMENTS TO MEASURE SYSTEM

COMMUNICATION OVERHEAD

TABLE IV
MAIN CONFIGURATIONS OF FOUR ADOPTED MODELS

MAUA results are obtained in a reasonable training time, when
the algorithm reaches convergence or the total communication
overhead reaches the given limitation, such as 55 G and 19 G
for CIFAR-10 and CINIC-10 datasets, respectively.

3) Models: For the deep pre-trained encoder, we adopt Mo-
bileNetV3 [49] pre-trained on ImageNet [50], with the last fully
connected layer removed. In addition, we consider 4 different
model architectures, where {AC

1 , A
C
2 , A

C
3 } are for clients, and

AS is for the server, and the main configurations of four adopted
models are shown in Table IV. It is worth noting that the model
on the server does not contain the foremost Conv+Batch+ReLU
layers to fit the training requirements of [24], [25]. Moreover,
both client-side model homogeneity and heterogeneity are con-
sidered in our experiments. Specifically, for the experiments
with homogeneous models, we compare FedCache with all
aforementioned benchmark algorithms, and all clients adopt the
model architectureAC

3 . For the experiments with heterogeneous
models, FedCache only compares with the benchmarks that
support model heterogeneity among clients, including FedDKC,
FedICT and FD, and clients with residuals of index mod 3 of 0,
1 and 2 are assigned with model architectures AC

1 , AC
2 and AC

3

respectively.
4) Hyper-Parameter Settings: We adopt stochastic gradient

descent with a learning rate lr = 0.01 and a batch size of 8 in all
the experiments. In addition, the hyper-parameters of benchmark
algorithms are set as follows:
� For pFedMe, we set η = 0.005, λ = 15 and β = 1 accord-

ing to [12].
� For MTFL, we adopt the FedAvg optimization strat-

egy [13], with other hyper-parameters following the default
setting in [51].

� For FedDKC, we adopt KKR as the knowledge refinement
strategy, with β = 1.5 and T = 0.12 according to [24].

� For FedICT, we adopt the similarity-based LKA strategy,
with β = λ = μ = 1.5 and T = 3.0 according to [22].

� For FD, no individualized hyper-parameters are re-
quired [23].

Finally, for our proposed FedCache, we set β = 1.5 and R =
16. The impact of hyper-parameters on system performance will
be investigated in the ablation study.

B. Results

1) Performance on Homogeneous Models: Table V displays
MAUA and communication overhead of FedCache compared to
all considered benchmarks on different datasets, and the MAUA
performance per unit of communication overhead is shown in
Fig. 5. As can be seen from Table V, FedCache achieves 77.71%,
44.42%, and 40.45% MAUA on FashionMNIST, CIFAR-10, and
CINIC-10 datasets, respectively, which are is comparable to the
considered benchmark algorithms. Meanwhile, according to the
criteria described in V-A2, the total communication overhead
of FedCache over the three datasets mentioned above are all
less than 0.20 G, and the speed-up ratios of FedCache are all
over ×78, which enable the communication efficiency to be
much higher than existing methods with previous architectures.
This is because FedCache adopts a lightweight communication
protocol with only logits and hash values being transferred, and
does not transmit model parameters as well as features with
relatively large sizes. Moreover, the efficient communication of
FedCache can be further verified in Fig. 5, where our method
exhibits a much steeper convergence curve than FedDKC, Fe-
dICT, pFedMe, and MTFL. We can also observe in Fig. 5 that
compared to communication-efficient FD, FedCache achieves
significantly higher MAUA, achieving satisfactory system per-
formance while maintaining communication efficiency orders of
magnitude higher than other benchmark algorithms. The reason
is that FedCache is an SLIA architecture rather than CLIA, where
enriched knowledge can be utilized to obtain significantly more
information for on-device model constructive optimization, thus
possessing performance superiority.

2) Performance on Heterogeneous Models: Table VI shows
the comparison of FedCache with benchmark algorithms that
support model heterogeneity on clients. Likewise, we can con-
clude that FedCache achieves comparable MAUA to consid-
ered benchmarks, but with extremely high communication ef-
ficiency due to the elimination of feature transfer compared
with FedDKC and FedICT. Similar to section V-B1, Fed-
Cache obtains a convergence curve in Fig. 6 that is capped
above FD, which indicates that FedCache gains better system
performance than FD. This further confirms the superiority
of our proposed FedCache architecture over heterogeneous
models.

VI. ABLATION STUDY

A. Ablation Settings

In this section, we conduct the ablation study to investigate
the impact of three factors on the performance of FedCache: the
degree of data heterogeneity, the proportion of local samples,
and the number of related samples. All ablation experiments are
evaluated on the FashionMNIST dataset, with the same settings
adopted for experiments with homogeneous models in section

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

WU et al.: FEDCACHE: A KNOWLEDGE CACHE-DRIVEN FEDERATED LEARNING ARCHITECTURE FOR PERSONALIZED EDGE INTELLIGENCE 9377

TABLE V
MAUA (%), COMMUNICATION OVERHEAD AND COMMUNICATION EFFICIENCY SPEED-UP RATIO ON HOMOGENEOUS ON-DEVICE MODELS

Fig. 5. MAUA (%) per unit of communication overhead in experiments with homogeneous models. Dashed lines indicate the extension of algorithms beyond
convergence to the maximum MAUA over communication overheads. The same as below.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

9378 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

TABLE VI
MAUA (%), COMMUNICATION OVERHEAD AND COMMUNICATION EFFICIENCY SPEED-UP RATIO ON HETEROGENEOUS ON-DEVICE MODELS

Fig. 6. MAUA (%) per unit of communication overhead in experiments with heterogeneous models.

V-B1 by default. The performance of all algorithms is measured
by MAUA (%) in the following subsections.

B. Results

1) Impact of Degree of Data Heterogeneity: To explore
the effect of data heterogeneity on the performance of Fed-
Cache, we set the hyper-parameter α to different values α ∈
{1.0, 3.0, 10.0} to control the degree of data heterogeneity,
and compare the performance of FedCache with FD, with the
results shown in Table VII and Fig. 7(a). It can be seen that
FedCache consistently outperforms FD despite the skewness of
local data distributions, reflecting the adaptability of our method
to different data environments.

TABLE VII
PERFORMANCE OF FEDCACHE AND FD WITH DIFFERENT α

2) Impact of Local Data Proportion: To investigate the per-
formance of FedCache with different percentages of local data to
the overall data, we control the number of different local samples
to {0.33%, 1%, 5%, 20%} of the whole dataset, and compare the
performance of FedCache with FD, with the results shown in
Table VIII and Fig. 7(b). We can observe that the performance

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

WU et al.: FEDCACHE: A KNOWLEDGE CACHE-DRIVEN FEDERATED LEARNING ARCHITECTURE FOR PERSONALIZED EDGE INTELLIGENCE 9379

Fig. 7. Impact of the degree of data heterogeneity, local data proportion, and
the number of related samples on the performance of FedCache.

TABLE VIII
PERFORMANCE OF FEDCACHE AND FD WITH DIFFERENT AVERAGE LOCAL

SAMPLE PROPORTIONS

TABLE IX
PERFORMANCE OF FEDCACHE AND FD WITH DIFFERENT R

of both FD and FedCache improves as the local sample share
of clients increases. Still, FedCache always outperforms FD,
which confirms the superior performance of our FedCache with
varying percentages of local data from a single client.

3) Impact of Number of Related Samples: To evaluate the
performance of FedCache with different numbers of related
samples, we set R ∈ {1, 4, 16, 64, 256} and compare the per-
formance of FedCache with FD with the aforementioned R
settings, with the results shown in Table IX and Fig. 7(c). It can
be seen that our method consistently outperforms FD in different
R settings. This indicates that FedCache is robust to the choice
of related samples and can achieve satisfactory performance
consistently.

VII. DISCUSSION

A. Analysis on Computation Complexity

We compare the communication complexity of FedCache
with other PFL architectures in Table X. On the device side, Fed-
Cache has the identical computation complexity as PIA, SLIA-
FE and CLIA, since their computation all mainly focuses on
on-device models’ forward propagation on local data. As there
is no need for local training based on public datasets, FedCache
has lower computation complexity on the device side compared
to SLIA-PD. On the server side, the computation overhead

of FedCache mainly consists of establishing relations among
samples through R-nearest neighbors retrieval and integrating
relevant knowledge of a given sample index in each round.
The server-side computation complexity comparison between
FedCache and PIA depends on the scale of model parameters
and the average number of local samples per client. In our
experiments on four datasets withR= 16, r > 100, hundreds of
samples held on a single client and the parameter size > 50K,
the server-side computation complexity of FedCache is much
smaller than that of PIA. Since FedCache converges better than
PIA in empirical experiments, the superiority of computation
overhead of FedCache over PIA will be pronounced in reality. In
addition, we claim that the server-side computation complexity
of FedCache is much smaller than that of SLIA-FE and SLIA-
PD. The reason for the former is that FedCache doesn’t require
forward propagation on server-side model training for each
sample. While the reason for the latter is that the average size of
private data per client is much smaller than that of public datasets
in practice. Although CLIA achieves relatively-low server-side
computation complexity over FedCache, it pays the price of
significantly reduced knowledge enrichment, resulting in poor
performance confirmed by empirical experiments in section V,
so FedCache still possesses an irreplaceable superiority over
CLIA in terms of balancing computation overhead and system
performance.

B. Limitations

We analyze that the limitations of FedCache are threefold.
One limitation of FedCache is that it conducts knowledge
distillation on device-side models only based on knowledge
associated with local samples, but neglects knowledge learning
for global generalization. As a result, it is only suitable for
personalization tasks rather than general tasks that require global
generalization capabilities. The generalization performance of
FedCache can be improved when introducing additional infor-
mation, such as partial global parameters or global public data.
Another limitation is that we apply our method only to con-
ventional image classification problems in our experiments, and
additional research on data encoding strategies, hash correlation
measures for serialized data and other non-image structured
data are also meaningful for FedCache. In addition, FedCache
cannot support PFL with dynamism and continuity data, while
end devices may continuously generate new data that requires
real-time processing and analysis [52]. By considering and
addressing the above limitations, FedCache can further enhance
its effectiveness in a wider range of applications.

VIII. CONCLUSION

In this paper, we propose FedCache, a novel federated learning
architecture tailored for personalized edge intelligence. Fed-
Cache designs a knowledge cache on the server for storing
newly-extracted knowledge uploaded by clients and fetching
correlatively personalized knowledge from samples with similar
hashes to the specified private data. On this basis, ensemble
distillation is performed on device-side local models for per-
sonalized constructive optimization. To our best knowledge,

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

9380 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

TABLE X
COMPARISON OF THE COMPUTATION COMPLEXITY OF PFL ARCHITECTURES

FedCache is the first architecture for personalized federated
learning that enables sample-grained logits interaction without
features transmission or public datasets. Empirical experiments
show that FedCache achieves comparable accuracy with state-
of-the-art personalized federated learning methods with various
architectures, meanwhile reducing communication costs by two
orders of magnitude.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Anfu Zhou from Beijing
University of Posts and Telecommunications, Tian Wen, Quyang
Pan, Xujing Li, Chungang Lin from the Institute of Computing
Technology, Chinese Academy of Sciences, and Yuhan Tang,
Aoxu Zhang from Beijing Jiaotong University for inspiring
suggestions.

REFERENCES

[1] D. Xu et al., “Edge intelligence: Empowering intelligence to the edge of
network,” Proc. IEEE, vol. 109, no. 11, pp. 1778–1837, Nov. 2021.

[2] B. Yang, B. Wu, Y. You, C. Guo, L. Qiao, and Z. Lv, “Edge intelligence
based digital twins for Internet of Autonomous Unmanned Vehicles,”
Softw.: Pract. Experience, 2022, doi: 10.1002/spe.3080

[3] M. Nasir, K. Muhammad, A. Ullah, J. Ahmad, S. W. Baik, and M. Sajjad,
“Enabling automation and edge intelligence over resource constraint iot
devices for smart home,” Neurocomputing, vol. 491, pp. 494–506, 2022.

[4] Y. Gong et al., “Edgerec: Recommender system on edge in mobile taobao,”
in Proc. 29th ACM Int. Conf. Inf. Knowl. Manage., 2020, pp. 2477–2484.

[5] R. S. Antunes, C. André da Costa, A. Küderle, I. A. Yari, and B. Eskofier,
“Federated learning for healthcare: Systematic review and architecture
proposal,” ACM Trans. Intell. Syst. Technol., vol. 13, no. 4, pp. 1–23,
2022.

[6] Q. Liu, S. Sun, M. Liu, Y. Wang, and B. Gao, “Online spatio-
temporal correlation-based federated learning for traffic flow forecasting,”
2023, arXiv:2302.08658.

[7] R. Kanagavelu et al., “Federated learning for advanced manufacturing
based on industrial IoT data analytics,” in Implementing Industry 4.0:
The Model Factory as the Key Enabler for the Future of Manufacturing,
Springer, 2021, pp. 143–176.

[8] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. Conf. Artif. Intell. Statist., PMLR 2017, pp. 1273–1282.

[9] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. Mach.
Learn. Syst., vol. 2, pp. 429–450, 2020.

[10] V. Kulkarni, M. Kulkarni, and A. Pant, “Survey of personalization tech-
niques for federated learning,” in Proc. 4th World Conf. Smart Trends Syst.,
Secur. Sustainability, 2020, pp. 794–797.

[11] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized feder-
ated learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 12,
pp. 9587–9603, Dec. 2023.

[12] C. T. Dinh, N. Tran, and J. Nguyen, “Personalized federated learn-
ing with Moreau envelopes,” Adv. Neural Inf. Process. Syst., vol. 33,
pp. 21394–21405, 2020.

[13] J. Mills, J. Hu, and G. Min, “Multi-task federated learning for personalised
deep neural networks in edge computing,” IEEE Trans. Parallel Distrib.
Syst., vol. 33, no. 3, pp. 630–641, Mar. 2022.

[14] H. Jin et al., “Personalized edge intelligence via federated self-
knowledge distillation,” IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 2,
pp. 567–580, Feb. 2023.

[15] C. Wu, F. Wu, L. Lyu, Y. Huang, and X. Xie, “Communication-efficient
federated learning via knowledge distillation,” Nature Commun., vol. 13,
no. 1, pp. 1–8, 2022.

[16] F. Sattler, A. Marban, R. Rischke, and W. Samek, “CFD: Communication-
efficient federated distillation via soft-label quantization and delta coding,”
IEEE Trans. Netw. Sci. Eng., vol. 9, no. 4, pp. 2025–2038, Jul./Aug. 2022.

[17] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015, arXiv:1503.02531.

[18] Z. Wu et al., “Spirit distillation: A model compression method with multi-
domain knowledge transfer,” in Proc. Knowl. Sci., Eng. Manage.: 14th Int.
Conf., Tokyo, Japan, Springer, 2021, pp. 553–565.

[19] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” Int. J. Comput. Vis., vol. 129, pp. 1789–1819, 2021.

[20] J. Zhang, S. Guo, X. Ma, H. Wang, W. Xu, and F. Wu, “Parameterized
knowledge transfer for personalized federated learning,” Adv. Neural Inf.
Process. Syst., vol. 34, pp. 10092–10104, 2021.

[21] Y. J. Cho, J. Wang, T. Chirvolu, and G. Joshi, “Communication-efficient
and model-heterogeneous personalized federated learning via clustered
knowledge transfer,” IEEE J. Sel. Topics Signal Process., vol. 17, no. 1,
pp. 234–247, Jan. 2023.

[22] Z. Wu et al., “FediCT: Federated multi-task distillation for multi-access
edge computing,” IEEE Trans. Parallel Distrib. Syst., early access, Jun.
26, 2023, doi: 10.1109/TPDS.2023.3289444.

[23] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim,
“Communication-efficient on-device machine learning: Federated dis-
tillation and augmentation under non-IID private data,” 2018, arXiv:
1811.11479.

[24] Z. Wu et al., “Exploring the distributed knowledge congruence in
proxy-data-free federated distillation,” ACM Trans. Intell. Syst. Technol.,
Dec. 2023. [Online]. Available: https://doi.org/10.1145/3639369

[25] Z. Wu, S. Sun, Y. Wang, M. Liu, X. Jiang, and R. Li, “Survey of knowledge
distillation in federated edge learning,” 2023, arXiv:2301.05849.

[26] B. Tan, B. Liu, V. Zheng, and Q. Yang, “A federated recommender system
for online services,” in Proc. 14th ACM Conf. Recommender Syst., 2020,
pp. 579–581.

[27] X. Zhou, Y. Tian, and X. Wang, “Source-target unified knowledge
distillation for memory-efficient federated domain adaptation on edge
devices,” 2022. [Online]. Available: https://openreview.net/forum?id=
8rCMq0yJMG

[28] H. Jiang, M. Liu, B. Yang, Q. Liu, J. Li, and X. Guo, “Customized federated
learning for accelerated edge computing with heterogeneous task targets,”
Comput. Netw., vol. 183, 2020, Art. no. 107569.

[29] S. Itahara, T. Nishio, Y. Koda, M. Morikura, and K. Ya-
mamoto, “Distillation-based semi-supervised federated learning for
communication-efficient collaborative training with non-IID private
data,” IEEE Trans. Mobile Comput., vol. 22, no. 1, pp. 191–205,
Jan. 2023.

[30] L. Zhang, D. Wu, and X. Yuan, “FedZKT: Zero-shot knowledge transfer
towards resource-constrained federated learning with heterogeneous on-
device models,” in Proc. IEEE 42nd Int. Conf. Distrib. Comput. Syst.,
2022, pp. 928–938.

[31] S. Yu, W. Qian, and A. Jannesari, “Resource-aware federated
learning using knowledge extraction and multi-model fusion,”
2022, arXiv:2208.07978.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1002/spe.3080
https://dx.doi.org/10.1109/TPDS.2023.3289444
https://doi.org/10.1145/3639369
https://openreview.net/forum{?}id$=$8rCMq0yJMG
https://openreview.net/forum{?}id$=$8rCMq0yJMG

WU et al.: FEDCACHE: A KNOWLEDGE CACHE-DRIVEN FEDERATED LEARNING ARCHITECTURE FOR PERSONALIZED EDGE INTELLIGENCE 9381

[32] A. Tak and S. Cherkaoui, “Federated edge learning: Design issues and
challenges,” IEEE Netw., vol. 35, no. 2, pp. 252–258, Mar./Apr. 2021.

[33] R. Yu and P. Li, “Toward resource-efficient federated learning in mobile
edge computing,” IEEE Netw., vol. 35, no. 1, pp. 148–155, Jan./Feb. 2021.

[34] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 2,
pp. 1–19, 2019.

[35] C. J. Hoofnagle, B. Van DerSloot, and F. Z. Borgesius, “The European
Union general data protection regulation: What it is and what it means,”
Inf. Commun. Technol. Law, vol. 28, no. 1, pp. 65–98, 2019.

[36] J. Nguyen et al., “Federated learning with buffered asynchronous aggrega-
tion,” in Proc. Int. Conf. Artif. Intell. Statist., PMLR, 2022, pp. 3581–3607.

[37] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
2019, arXiv: 1903.03934.

[38] E. Diao, J. Ding, and V. Tarokh, “Heterofl: Computation and communi-
cation efficient federated learning for heterogeneous clients,” in Proc. Int.
Conf. Learn. Representations, 2021.

[39] W. Y. B. Lim et al., “Federated learning in mobile edge networks: A
comprehensive survey,” IEEE Commun. Surv. Tut., vol. 22, no. 3, pp. 2031–
2063, Third Quarter 2020.

[40] C. He, M. Annavaram, and S. Avestimehr, “Group knowledge transfer:
Federated learning of large CNNs at the edge,” in Proc. Adv. Neural Inf.
Process. Syst. 80, 2020, pp. 14068–140.

[41] D. Li and J. Wang, “FedMD: Heterogenous federated learning via model
distillation,” 2019, arXiv: 1910.03581.

[42] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Communication-efficient
federated distillation with active data sampling,” in Proc. IEEE Int. Conf.
Commun., 2022, pp. 201–206.

[43] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 4, pp. 824–836,
Apr. 2020.

[44] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel image
dataset for benchmarking machine learning algorithms,” 2017, arXiv:
1708.07747.

[45] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[46] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” 2009.

[47] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey, “CINIC-10
is not imagenet or CIFAR-10,” 2018, arXiv: 1810.03505.

[48] C. He et al., “FedML: A research library and benchmark for federated
machine learning,” 2020, arXiv: 2007.13518.

[49] A. Howard et al., “Searching for mobileNetV3,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., 2019, pp. 1314–1324.

[50] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2009, pp. 248–255.

[51] J. Mills, J. Hu, and G. Min, 2022. [Online]. Available: https://github.com/
JedMills/MTFL-For-Personalised-DNNs

[52] C. Savaglio and G. Fortino, “A simulation-driven methodology for IoT
data mining based on edge computing,” ACM Trans. Internet Technol.,
vol. 21, no. 2, pp. 1–22, 2021.

Zhiyuan Wu (Member, IEEE) is currently a research
assistant with the Institute of Computing Technol-
ogy, Chinese Academy of Sciences (ICT, CAS). He
has contributed several technical papers to top-tier
conferences and journals as the first author in the
fields of computer architecture, computer networks,
and intelligent systems, including IEEE Transactions
on Parallel and Distributed Systems (TPDS), IEEE
Transactions on Mobile Computing (TMC), IEEE
International Conference on Computer Communica-
tions (INFOCOM), and ACM Transactions on Intel-

ligent Systems and Technology (TIST). He has served as a technical program
committee member or a reviewer for more than 10 conferences and journals,
and was invited to serve as a session chair for the International Conference
on Computer Technology and Information Science (CTIS). He is a member
of ACM, the China Computer Federation (CCF), and is granted the President
Special Prize of ICT, CAS. His research interests include federated learning,
mobile edge computing, and distributed systems.

Sheng Sun received the bachelor’s degree from Bei-
hang University, and the PhD degree from the In-
stitute of Computing Technology, Chinese Academy
of Sciences. She is currently an associate professor
with the Institute of Computing Technology, Chinese
Academy of Sciences. She has led or executed 5 major
funded research projects and published more than 20
technical papers in journals and conferences related to
computer network and distributed systems, including
IEEE Transactions on Parallel and Distributed Sys-
tems (TPDS), IEEE Transactions on Mobile Comput-

ing (TMC), and IEEE International Conference on Computer Communications
(INFOCOM). Her research interests include federated learning, edge intelli-
gence, and privacy computing.

Yuwei Wang (Member, IEEE) received the PhD
degree in computer science from the University of
Chinese Academy of Sciences, Beijing, China. He
is currently an associate professor with the Institute
of Computing Technology, Chinese Academy of Sci-
ences. He has been responsible for setting more than
30 international and national standards, and also holds
various positions in both international and national in-
dustrial standards development organizations (SDOs)
as well as local research institutions, including the
associate rapporteur with the ITU-T SG16 Q5, and

the deputy director of China Communications Standards Association (CCSA)
TC1 WG1. His current research interests include federated learning, mobile
edge computing, and next-generation network architecture.

Min Liu (Senior Member, IEEE) received the BS
and MS degrees in computer science from Xi’an
Jiaotong University, China, and the PhD degree in
computer science from the Graduate University of
the Chinese Academy of Sciences, China. She is
currently a professor with the Institute of Computing
Technology, Chinese Academy of Sciences, and also
holds a position with Zhongguancun Laboratory. Her
current research interests include mobile computing
and edge intelligence.

Ke Xu (Fellow, IEEE) received the PhD degree from
the Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing, China. He serves
as a full professor with Tsinghua University. He
has published more than 200 technical papers and
holds 11 U.S. patents in the research areas of next-
generation internet, blockchain systems, the Internet
of Things, and network security. He is a member of
ACM. He served as the Steering Committee Chair
for IEEE/ACM IWQoS. He has guest-edited several
special issues in IEEE and Springer journals. He is

the editor of IEEE Internet of Things Journal.

Wen Wang received the bachelor’s degree with honor
from Xidian University. He is currently working
toward the master’s degree with the Institute of
Computing Technology, Chinese Academy of Sci-
ences. His research interests include network security,
in-network computing and information retrieval.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

https://github.com/JedMills/MTFL-For-Personalised-DNNs
https://github.com/JedMills/MTFL-For-Personalised-DNNs

9382 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

Xuefeng Jiang received the bachelor’s degree with
honor from the Beijing University of Posts and
Telecommunications. He is currently working toward
the PhD degree with the Institute of Computing
Technology, Chinese Academy of Sciences. His re-
search interests include distributed optimization and
machine learning.

Bo Gao (Member, IEEE) received the MS degree in
electrical engineering from the School of Electronic
Information and Electrical Engineering, Shanghai
Jiaotong University, Shanghai, China, in 2009, and
the PhD degree in computer engineering from the
Bradley Department of Electrical and Computer En-
gineering, Virginia Tech, Blacksburg, USA, in 2014.
He was an assistant professor with the Institute of
Computing Technology, Chinese Academy of Sci-
ences, Beijing, China from 2014 to 2017. He was a
visiting researcher with the School of Computing and

Communications, Lancaster University, Lancaster, U.K. from 2018 to 2019. He
is currently an associate professor with the School of Computer and Information
Technology, Beijing Jiaotong University, Beijing. He has directed a number
of research projects sponsored by the National Natural Science Foundation of
China (NSFC) or other funding agencies. He is a member of ACM and China
Computer Federation (CCF). His research interests include wireless networking,
mobile/edge computing, multiagent systems, and machine learning.

Jinda Lu received the bachelor’s degree with honor
from Jilin University. He is currently working toward
the master’s degree with the School of Information
Science and Technology, University of Science and
Technology of China. His research interests include
artificial intelligence, pattern recognition, and knowl-
edge distillation.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

