This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Ws IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

DeCross: Toward Accountable and Efficient
Cross-Chain Collaboration in lloT

Yuchao Zhang *“, Xiaofeng He

Abstract—Blockchain-based industrial Internet-of-Thi-
ngs (lloT) systems have seen rapid adoption and devel-
opment in recent years. The increasing diversity of lloT
application scenarios is driving the growth of multichain
ecosystem, making cross-chain communication a key issue
in multichain collaboration. However, existing centralized
cross-chain architectures risk derailing the blockchain’s
trust-free decentralization and suffer from single point fail-
ure. The design of decentralized cross-chain collabora-
tion mainly faces two key challenges. First, implicit cross-
chain accountability, which is caused by collusion among
malicious distributed participants and, thus, compromises
cross-chain security. Second, low cross-chain efficiency,
which is induced by the highly dynamic environment in
practical cross-chain networks, i.e., changing member-
ships, and adaptive attacks to corrupt honest nodes. In
this article, we propose a cross-chain consensus protocol
DeCross to solve the abovementioned problems. DeCross
achieves decentralized cross-chain collaboration with ex-
plicit accountability and high efficiency. Specifically, we
audit participants with a succinct auditable data object
constructed from the protocol to hold nodes accountable
for misbehaving. Furthermore, we propose a parallel pro-
cessing workflow that leverages both CPUs and GPUs to
guarantee efficient and stable cross-chain communication.
Finally, we implement a prototype based on the hyperledger
fabric with both local and geo-distributed clusters. Our ex-
tensive experiments show that DeCross achieves 44% bet-
ter throughput over the existing cross-chain approaches.

Index Terms—Blockchain, consensus, cross-chain com-
munication.

Received 8 August 2024; revised 18 October 2024 and 16 Febru-
ary 2025; accepted 19 February 2025. This work was supported in
part by the National Natural Science Foundation of China under Grant
62172054, in part by the Beijing Nova Program under Grant 2023140,
in part by the National Natural Science Foundation of China for Dis-
tinguished Young Scholars under Grant 62425201, and in part by the
University of Minnesota Grant-in-Aid 739819. Paper no. TlI-24-4028.
(Corresponding author: Yuchao Zhang.)

Yuchao Zhang, Xiaofeng He, and Xiaotian Wang are with the School
of Computer Science (National Pilot Software Engineering School),
Beijing University of Posts and Telecommunications, Beijing 100088,
China (e-mail: yczhang@bupt.edu.cn; xiaofenghe@bupt.edu.cn;
wangxiaotian@bupt.edu.cn).

Haiyang Wang is with the Department of Computer Science,
University of Minnesota Duluth, Duluth, MN 55812 USA (e-mail:
haiyang@d.umn.edu).

Ke Xu is with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China (e-mail:
xuke@tsinghua.edu.cn).

Digital Object Identifier 10.1109/T11.2025.3547061

, Xiaotian Wang

, Haiyang Wang, and Ke Xu ', Fellow, IEEE

[. INTRODUCTION

HE evolution of the industrial Internet-of-Things (IIoT)
T is driving rapid growth of various applications such as
smart cities, e-healthcare, and intelligent transportation [1]. With
the increasing scale of IIoT networks, massive real-time data
processing and storage are put forward with high-quality re-
quirements. Furthermore, there exist non-negligible security and
trust issues in information exchange. It has become a nontrivial
task to enable confidential collaborations in IIoT [2].

With the characteristics of decentralization, immutability, and
transparency, blockchain-based IIoT has emerged as a prospec-
tive solution for providing secure and collaborative services in
different IIoT scenarios such as circular economy, smart en-
ergy, and intelligent transportation [3], [4], [S]. The blockchain
technology adopted to the IIoT ecosystem enables secure and
traceable data exchange, reducing the risk of data tampering and
leakage. However, the rapid growth of heterogeneous IIoT ap-
plications necessitates flexible data sharing among IloT devices
across various cooperative domains and organizations. The re-
sulting cross-domain and cross-organization collaboration typ-
ically involves multiple blockchains processing transactions
collaboratively. Consequently, cross-chain operation among a
set of collaborative members in IIoT has become increasingly
prominent. For example, in the circular economy, cross-chain
communication allows nontrusting parties from different orga-
nizations or regions to cooperate to create the circular economy
of solar panels and make consensus on specific indexes, i.e.,
recycling cost per module and solar panel lifetime [3]. In smart
energy, cross-chain transactions enable energy trading between
prosumers even if they register accounts on different chains [5].
Cross-chain collaboration significantly improves productivity
and enhances the delivery of services, thereby becoming a
promising industrial production mode. Currently, most of the
cross-chain solutions adopt a centralized architecture, where
a trusted third party (e.g., relay chains) [6] and the notary
mechanism [7]) is introduced. Although this method can achieve
interoperability across chains, it relies on the trust premise
of committees or an honest majority assumption. The extra
trust presuppositions significantly lower the decentralization of
blockchains. Besides, relying on a central party has a higher
possibility of causing single point failures.

A blockchain system typically relies on a consensus proto-
col for reaching an agreement and upholding fault-tolerance
in a decentralized manner. Hence, a cross-chain consensus
protocol is viewed as a prospective solution to handle the
cross-chain collaboration in blockchain-based IIoT without

1941-0050 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html
for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:38:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0135-8915
https://orcid.org/0009-0003-6465-0707
https://orcid.org/0000-0001-5597-015X
https://orcid.org/0000-0003-2587-8517
mailto:yczhang@bupt.edu.cn
mailto:xiaofenghe@bupt.edu.cn
mailto:wangxiaotian@bupt.edu.cn
mailto:haiyang@d.umn.edu
mailto:xuke@tsinghua.edu.cn

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

compromising decentralization and security. However, the de-
sign of a cross-chain consensus protocol introduces two key
challenges. 1) Explicit cross-chain accountability: In cross-
chain systems, consensus membership is more likely to be-
come dishonest since the nodes (replicas) may originate from
multiple heterogeneous blockchain networks. Although existing
Byzantine fault tolerance (BFT) consensus protocols tolerate a
subset of participants behaving arbitrarily, they ensure safety
and liveness when fewer than 1/3 of N replicas misbehave.
With more misbehaving replicas, the consensus is unreliable
and misbehavior is unable to be identified. Besides, malicious
replicas may misbehave during ledger state updating, which can
destroy consistency and cause ledger conflicts across replicas.
Thus, the accountability of replicas is blurred, making it in-
tractable to prevent the global ledger stored in multiple chains
from being tampered with. In this case, explicit replica account-
ability in blockchain ledgers is quite important to mitigate the
issue. 2) High cross-chain efficiency: On one hand, stability
demand. As real IIoT applications are highly dynamic, cross-
chain communication should be able to remain stable under
dynamic environments. Specifically, the dynamic environment
includes changing membership of the cross-chain consensus
committee due to the joining/leaving of nodes, and fluctuating
network conditions such as changing bandwidth and delay. On
the other hand, low latency demand. Since a single cross-chain
transaction involves multiple transactions to register, record, and
finalize, the frequent read/write operations from these transac-
tions lead to high processing latency. Besides, the corresponding
read/write dependency conflicts between transactions incur extra
time to solve. Consequently, low cross-chain efficiency poses
a significant challenge that hinders the large-scale adoption of
cross-chain collaboration in practice.
To tackle the aforementioned problems, we propose DeCross,
a trusted and decentralized cross-chain consensus protocol for
blockchain-enhanced IIoT. It achieves fully distributed interop-
eration without depending on any trusted centralized intermedi-
ary. To guarantee explicit accountability, we design an auditing
mechanism based on the protocol that can assign blame regard-
less of the number of misbehaving replicas. The auditing relies
on a lightweight auditable data object (ADO) computed from
the consensus messages, Merkle tree, and the digital signatures.
The universal verifiable proof can be generated from the ADO to
provide auditors with evidence for succinct proof of misbehav-
ing. To ensure cross-chain efficiency, we then present a parallel
processing workflow utilizing the GPU resources for consensus
configuration to reduce latency in dynamic cross-chain net-
works. We then propose the conflict-free multithread transac-
tion execution with CPU to further accelerate the cross-chain
communication. In a nutshell, our work is a novel attempt to
achieve high-performance cross-chain communication without
compromising security guarantees in a decentralized way.
Our contributions are discussed as follows.
1) We propose a decentralized cross-chain protocol DeCross
to achieve auditable collaboration in blockchain-based
IIoT without a trusted third party or relay committee.
2) We propose a parallel processing workflow that lever-
ages both CPU and GPU to achieve efficient cross-chain

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

communication and improve resource utilization in a
highly dynamic network.

3) Furthermore, we give a comprehensive evaluation of
the entire DeCross scheme. The results show that our
proposed solution achieves 44% higher throughput than
existing cross-chain schemes.

The rest of this article is organized as follows. The related
work is reviewed in Section II. Section III presents the system
design. Sections IV and V describe our protocol in detail.
Section VI presents the analysis of security and correctness.
The implementation and evaluation are presented in Section VI.
Finally, Section VII concludes this article.

Il. RELATED WORK

In this section, we review the cross-chain technology and
accountability in both distributed systems and blockchains.
Table I compares the representative related works across various
aspects. A denotes the predefined security parameter, where the
failure probability P, of the N replicas satisfies P, < 27*.

A. Cross-Chain Communication

Cross-chain communication has drawn attention in both re-
search and industry areas. Existing cross-chain solutions mainly
include the following four types: sidechains, relays, notary
mechanism, and hashed time-lock contracts (HTLC). Sidechains
are the most common type of cross-chain communication, which
realizes interactions through a centralized two-way peg [8].
Relays are trusted parties incorporating execution of smart con-
tracts from the sender and providing verification of executing
results to receiver [6]. The notary mechanism applies monitors
across multiple blockchains and undertakes the interactions [7].
Compared with relay modes, which commonly extend the ex-
isting blockchain structure, the notary acts as a third-party
processing operations on both chains. HTLC combine hash-lock
and time-lock to generate cryptographic proofs for cross-chain
transactions within a timeout period [9].

However, the abovementioned solutions rely on centralized
servers or trusted third parties to bridge the communication
between clients and the blockchain networks, which is unavoid-
able for single point failure and misbehaving of the central
server although these solutions may achieve high throughput. To
solve the issue, Polkadot [10] achieves interoperability through
a global data structure called parachains. These parallelized
parachains connect different chains and validate cross-chain
state transition proofs via the cross-chain message passing pro-
tocol. Cosmos [11] ensures cross-chain data transfer through
specific channels called Hubs. The relayer in Hubs handles the
cross-chain transactions from the sender. However, Polkadot and
Cosmos still suffer from semicentralized governance and low
scalability.

Recent works aim to utilize decentralized cross-chain
schemes to eliminate centralization. AC*WN [12] proposes the
first decentralized atomic cross-chain commitment protocol,
which ensures that conflicting events never occur simultaneously
and allows concurrent processing of atomi3c swaps. Ghosh
et al. [13] introduced a decentralized gateway architecture that

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:38:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: DeCross: TOWARD ACCOUNTABLE AND EFFICIENT CROSS-CHAIN COLLABORATION IN lIOT 3

TABLE |
COMPARISONS OF CROSS-CHAIN SYSTEMS AND ACCOUNTABLE PROTOCOLS

Systems/protocols Cross-chain approach Fault tolerance = Communication complexity ~ Accountability Reliability
Cosmos [11] Relayer %N O (An?) X X
zkBridge [14] Zero-knowledge proofs %N O (n(logn+ X)) X v
AC3WN [12] Atomic cross-chain commitment %N (@) (/\n2) X X

CrossChannel [15] Off-chain payment channel %N O (Anlogn) X v

Prosecutor [16] X %N o] (/\n2) Implicit v
Polygraph [17] X %N o (/\n2) Implicit v
DeCross(Ours) Cross-chain consensus N O (Anlogn) Explicit v

interfaces between public and private blockchains. Although it
uses off-chain multisignature collection to improve efficiency,
the Consensus on Consensus mechanism may introduce un-
acceptable latency in real networks. Zkbridge [14] designs a
trusted and decentralized cross-chain architecture without any
honesty assumptions and proposes a concise proof for on-chain
verification acceleration. CrossChannel [15] tries to accelerate
cross-chain transactions through off-chain channels but compro-
mises safety. All these works above suffer from low cross-chain
efficiency due to the dynamic states of nodes and networks.
In addition, replica accountability is ignored, making security
guarantees impractical in the face of targeted attacks.

B. Accountability in Blockchains

Accountability is a fundamental concept in distributed sys-
tems and it serves as an alternative safety guarantee in blockchain
to strict security measures, enabling the detection and attribution
of misconduct by malicious participants. Moreover, account-
ability can incentivize replicas to either prevent or disclose
misbehavior. PeerReview [18] uses accountable virtual ma-
chines to ensure accountability in distributed systems without
violating the liveness. It maintains auxiliary information from
re-execution to provide evidence for detecting faults. However,
it incurs high overhead since all consensus messages are signed.
Du et al. [19] proposed the first pragmatic data auditing protocol
applied in the decentralized storage system for efficient and
privacy-preserving on-chain verification. However, it relies on
prebuilt cryptography primitives to implement before auditing
and is limited to be applied in the smart contract.

Accountability with more than f + 1 consensus participants
misbehaving has been explored to identify and blame mis-
behaving parties in some cases without relying on an honest
majority assumption. Prosecutor [16] examines the auditability
of BFT consensus protocols, proposing an auditable ledger that
defines dishonest behavior based on the review of consensus
protocol messages and the blockchain ledger. Polygraph [17]
is another accountable BFT consensus protocol designed to
detect misbehavior with more than f + 1 replicas. However,
the accountability mechanisms in these works fail when 2 f + 1
participants are corrupted because these malicious replicas can
collude with each other to tamper with the ledger. Besides, the
reconfiguration of the consensus membership is not well-defined
to prevent the persistent misbehaving replicas from slowly com-
promising honest replicas over time.

Y=

Blockehain | geng Cross-chain Tx D ‘ Client Il

: [] Send Cross-chain Tx
Client | g)

Participants
(Blockchain nodes)

- 7.\7 Y Auditing ®
i [-9 B Oem
_,;g.‘"') % Client Il |

(Auditor) |

1
1
1
1
,,,,,,,,,, \ i

- Validators |
i . eader
1 Weight 3@ ’gLighlweighl

\ GCN

_— Onchain Cross- * =
0000
Sliding Window

Off-chain Consensus Configuration

Participants
(Blockchain nodes)

Fig. 1. Proposed cross-chain architecture.

[ll. SySTEM DESIGN OF DECROSS

In this section, we present the system design of DeCross. We
first give the system model of DeCross and then explain the
overview of DeCross scheme.

A. System Model

Similarly to intrachain consensus, DeCross proceeds in
epochs within a set of nodes, which can be either honest or
malicious. DeCross follows the Byzantine failure model and
consists of IV nodes with f malicious nodes. Malicious nodes
may collude with each other and behave arbitrarily, e.g., delay,
tamper, and discard messages, send conflicting content to other
nodes, keep silent when receiving messages, or pretend unable
to send messages. Like existing blockchain systems, the nodes
in DeCross rely on a partially synchronous network assump-
tion, where all messages can be successfully delivered after an
unknown global stabilization time.

B. Overview of DeCross

The architecture of the system is shown in Fig. 1, where
cross-chain interactions are configured and dealt with. The pro-
posed scheme mainly involves four entities: clients, participants,
validators, and auditors.

1) Clients: Clients connect to the blockchain network via
IIoT devices to send, receive, and validate intrachain and cross-
chain transactions between blockchain nodes.

2) Participants: Participants are blockchain nodes in cross-
chain systems. They act as the intrachain consensus nodes and

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:38:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Cross-chain transactions
°
- Tx

Client 1 7x1DBcID

Tv
Cliont 2Tx|DBcID ™

Transacllon Balch
[]read ! - (T
Node - H . "
[£] N I e N Evidence generation

Multi-threads transaction executing

v v
D D —|(n) [z () .
Validators ~ Leader l

Global order finalization TxEs

TXz E2> | Key [Value |
| Version Number
<Txp,Ep>

Ledger s!alte update

T
g% CPU-based cross-chain consensus proceeding

—_—
@ GPU-based lightweight machine learning

Workflow of DeCross cross-chain scheme.

Clent 3T><IDBcID

\

Efficient Parallel Processing

Fig. 2.

are responsible for ordering, executing, and storing the transac-
tions.

3) Auditors: Auditors can be any clients who find the ledger
is nonlinear. They initiate the auditing process upon observ-
ing inconsistencies in the execution results or the ledger state.
The related malicious nodes are then identified and blamed by
generating the universal proof of misbehaving, and the invalid
transactions can be replayed to reconstruct a valid global ledger
state.

4) Validators: Validators are elected from different chains as
cross-chain consensus committee members. They are involved
in the cross-chain consensus during which the evidence used for
auditing is generated and stored.

Based on the architecture above, we design a cross-chain
consensus protocol named DeCross, as shown in Fig. 2. DeCross
achieves both accountability in a malicious environment and
efficiency in the dynamic and resource-constrained cross-chain
network. The workflow can be summarized as follows: The
clients send cross-chain transactions that are processed through
cross-chain consensus. The cross-chain consensus consists of
several blockchain nodes called validators, which are elected
based on the output of a lightweight GCN model. During the
cross-chain consensus, the validators order and execute the
transactions, pack them into a block, and commit it. We build a
parallel processing framework leveraging both CPU and GPU
to enhance efficiency. Then, the blockchain ledger is updated
and the execution result is replied to the client. A lightweight
ADO is also generated and stored. Whenever a client finds
inconsistencies in the ledger state, it can instantly begin auditing
to check the misbehavior. A universal proof of the incorrect
transaction execution is constructed from the ADO. Then, it can
assign blame to those validators colluding with each other to
participate in the malicious behavior.

IV. ACCOUNTABILITY-PRESERVING CROSS-CHAIN PROTOCOL

In this section, we formalize the cross-chain protocol DeCross
and explain the auditing based on this protocol.

A. Basic DeCross

DeCross is an accountability-preserving Byzantine consensus
protocol for cross-chain transactions. The protocol proceeds
with an increasing view number v and collects N — f votes from
replicas in each phase to ensure liveness and safety, similar to

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Send Request , Sequence IF\ dence Generatio Y Commitment | Auditing
Client T T T y
1 | | 1 1 I i
1 I | I 1 i i 1
(Leader) !)] : 1 ! I !
Validator 1 . : i 1
! 1 1 I !
1 i 1 l s [
1 \ I l [
Validator 2 | 1 i
I /
1

Y/ i //; A\V/E
e M N ANS AN

V\ew chang
(Leader rotation)

T T T
prepareQC signQC Commit Reply Return evidence

Consensus epoch j —m8 —— ——————»

Fig. 3. DeCross protocol specification.

Hotstuff, the state-of-the-art Byzantine fault-tolerant consensus
protocol [20]. The collection of N — f votes in a specific view is
referred to as a quorum certificate (QC). A view-change proposal
is initiated to enter the new view and perform leader rotation if
any replica does not obtain QC for a period of time (timeout).
Fig. 3 describes the consensus workflow: After receiving re-
quests from a client, the consensus proceeds by collecting several
QCs and replies to the client. DeCross achieves auditing by
providing auditors with succinct proof and universally verifi-
able evidence generated from signed protocol messages. Clients
can start auditing when inconsistencies by checking the ADO,
which is computed from some auxiliary data embedded in the
consensus messages.

B. Protocol Specification

As shown in Algorithm 1, DeCross proceeds in three phases
for each round, i.e., sequence, evidence generation, and com-
mitment.

1) Phase | Sequence: The transaction requests sent from the
client are first received by cross-chain consensus replicas named
validators and then broadcast. Different from the conventional
consensus, the requests in DeCross can be sent to multiple
validators in parallel, instead of only to the leader. This means
cross-chain transactions can be individually disseminated and
ordered by validators through multiple instances of consensus.
If one validator does not receive sufficient messages for a period
of time or suspects the leader of misbehaving, a view-change
request is initiated for the leader rotation. A new leader begins
broadcasting after receiving N — f votes. We design an efficient,
secure, and fair leader rotation approach, which will be discussed
in Section V.

When a leader collects a batch of cross-chain transactions, it
first locally orders the requests and carries out a pre-execution
result resy, = (Rix, Wix, Geur) for each transaction. We record
the read set Ry, and the write set W, in a transaction execution.
Gy s the state root of the current block that represents the
latest ledger state. After pre-execution, the leader computes the
Merkle proof of all R and Wi of the received transactions,
denoted as 7, and 7,,. The hash value of the consensus proposal
is defined as

Hprepare = haSh(WTHﬂ—rHchr)- (1)

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:38:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: DeCross: TOWARD ACCOUNTABLE AND EFFICIENT CROSS-CHAIN COLLABORATION IN lIOT 5

Algorithm 1: Accountability-Preserving Cross-Chain Pro-
tocol.
1: procedure SEQUENCE

2: ON sendPrepare(request = {tz})
3: Pre: verify(t)
4 T+« TU{tz}; G+ {}
5: R + {}; v+ getCurrentView()
6: if |Uj0cat| < v then
7: sendViewChange()
8: end if
9: foralltx € T do
10: (Rtz, Wha) + execute(v, tx);
11: R+ RU (tx, Rz, Wiz);
12: Ty Ty — getMerkle Proof (R, Wiz);
13: G « generateRoot(pre)
14: Hyrepare < hash(m| |7 ||Geur)
15: broadcast(Hprepare)
16: end for

17: end procedure
19: procedure EVIDENCE GENERATION
20: On receiving N — f votes:
21: broadcast(R, prepareQC, sendSign)
22: pre + receivePrepare(prepareQC, v)
23: Gpur + generateRoot(PMT(p))
24: BV, ¢ {H(H(Hypepore| | H(G))]|Crar))
25: SIG < getSignature(k)
26: broadcast(commit, SIQ)
27: end procedure
29: procedure COMMITMENT
30: On receiving N — f votes:
31: broadcast(signQC, sendCommit, p, EV,,)
32: p < receiveCommit(signQC, v, M, EV},)
33: for allr € R do

34: t + removeTx(r); L + L || (t)
35: Sig < Sigpre, SiGsig;
36: ADO
— (EVp, Ty, Ty, Cp, {SIGpre }, {SIGig})
37: end for

38: end procedure

Then, the leader adds Hpepare into the prepare consensus mes-
sage and broadcasts the ordered transaction requests to other
validators. Upon receiving the messages, a validator executes
the transactions in the consensus proposal and packs the trans-
action execution records into a global Merkle tree GMT),,. If
the reconstructed proof of executing results and the updated
Merkle tree root match that received from the leader, it adds a
digital signature and replies to the leader with a prepare vote. The
signature is generated via a hash function based on 1) its private
key, ii) the hash of the consensus proposal. After receiving
N — f confirmation from other validators, the leader combines
them into a prepareQC. If the match fails, the record of this
proposal is aborted and the leader initializes a new consensus
instance.

2) Phase Il Evidence Generation: In this phase, the leader
first broadcasts prepareQC in a sign consensus message. The
evidence is to prove the write set execution is signed by at least
N — f validators. We design a partial Merkle tree PMT,, of a
consensus proposal p for evidence generation. It can declare
whether operations in R and Wi of all transactions in the
proposal have been executed correctly. In addition, it helps
to update only the state root digest without accessing the full
Merkle tree. PMT), shares the same state root as the full Merkle
tree but only the tree nodes corresponding to transactions that
have Wy after a checkpoint Cp, along with their Merkle paths,
are reserved. In other words, a PMT,, only records the Wi
from transactions that are received after a checkpoint index.
The design has two reasons: On the one hand, the execution
of read-only transactions will not tamper the ledger state, and
the cost of constructing a PMT,, is minimal. On the other
hand, every validator stores a checkpoint Cp that represents
the latest auditing index. It enables auditing without replay-
ing the ledger from the start since the transactions before the
checkpoint are verified. After the auditing process is completed,
the checkpoint is updated through consensus. We then define
the evidence

EV,, = {hash (hash (Hpepare|[hash(Gawmr,) ||Gemr,) } - (2)

It describes the unique digest of execution results within the
path from the leaf to the root in GMT,, and PMT,. Although
the evidence is generated partly from the ledger state, it can be
hard for third parties to alter the evidence from which we can
carry out the proof of collusion. Each validator then computes
an EV, using the GMT,, and replies to the leader along with its
digital signature. When the leader receives N — f sign votes,
it combines them into a signQC, packs the transactions into a
block, and then broadcasts a commit message.

3) Phase lll Commitment: In the commitment phase, two
components need to be committed to complete the cross-chain
transaction: i) block commitment and ii) evidence commitment.

The block commitment is to verify the generated block and
decide whether it can be appended to the ledger. After the
leader proposes a block in the commit message, validators check
the block hash to verify the integrity and the correctness of
the received block. To avoid misbehaving during the block
dissemination, validators will reply to the block hash to preclude
malicious parties from tampering with the content. As for evi-
dence commitment, validators verify the validity of the prepare
and sign messages through digital signatures and recompute
the Merkle tree root using the transactions in the block. If the
abovementioned results match, validators send the execution
results to the client. After the client receives f 4 1 identical
replies, the block is committed and appended to the chain. The
ledger state is also updated according to the write operations in
the PMT,,. Finally, the validators store the lightweight ADO for
each block as

ADO, = (EV,,, m,, Ty, COp, {SIGpre } , {SIGig }) . (3)

{SIGy:. } and {SIGyj, } indicate the signatures in the prepare and
sign consensus messages, respectively. The ADO is returned to

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:38:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

an auditor for auditing if inconsistency in the ledger is found or
validators are suspected of misbehaving.

The storage cost is acceptable since except for the signatures,
which have O(N) space complexity, all other elements take up a
small constant storage size. The packed transactions and related
consensus messages are maintained in validators until the check
index exceeds the transactions.

C. Auditing

When any client finds that no successive and linearizable
execution in the stored state can produce the same sequence
of evidence, it is deemed that dishonest behavior occurs and the
auditing is booted up. We apply auditing to detect misbehaving
regardless of the number of malicious validators. The auditor
first receives a collection of ADO to find proof of misbehavior
regardless of the number of misbehaving validators.

As shown in Algorithm 2, the auditor first retrieves the check-
point index Cp related to the abnormal results and a portion of
the ledger that refers to the evidence marked with Cp from the
validator. Then, it begins verifying from the index, it first checks
the transaction order and the signatures of consensus messages
{SIGy } and {SIGgj, } to confirm that i) the index is a right and
valid mark, ii) the evidence is not expired. Then, the auditor
checks 7., m, to confirm that the transactions referenced by
the evidence are recorded at the right positions in the portion.
Finally, we check the execution result, if the evidence EV,,
does not match the result in the portion or exception occurs
before this phase, then we hold accountability within f + 1
malicious validators. The misbehaving can be induced by a
certain proportion of malicious validators M:

1) M <=2f+1:1In this case, if the proposal that con-
tains the transaction has the same view as that in the prepare
messages, we can assert to blame those f + 1 validators that
have signed and committed for the batch. If the view num-
ber is unequal, the M = C\.() Csig validators can be blamed
where the C\. and Cj;, represent the validators having send-
ing the view change message and having signed the prepared
messages.

2) M >2f+ 1: If no misbehavior is found still, we con-
clude that more than 2f + 1 or more validators may col-
lude to have misbehaved and lead to faulty transaction exe-
cution results. Therefore, the auditor can replay the transac-
tions from the check index since the corrupted transactions
before the check index is legitimate. If re-executed a trans-
action fails to match the result in the portion of the ledger
throughout this process, the auditor generates a global verifiable
proof

7T<tX, SIGpre|sig ’{GMTlx—rool}’{PMTlx—mol}> : (4)

SIGpe|sig Tepresents the signatures corresponding to the trans-
action in the prepare and sign consensus messages. GM Ty oot
and PMT 001, respectively, indicate the sets that include all
paths from the global and partial Merkle tree roots to the leaves
containing the inconsistent transaction. Then, any validator that
signed the proposal containing the ledger fragment is blamed
for the misbehaving.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Node Characteristics

o——9
Graph P (096
Construction / ® nput /" | Output Classify
Transaction Record v | €O 046 [
-\ _

Probability vector

Transaction Latency GCN model
model

Fig. 4. LightGCN model for validator election.

Algorithm 2: Auditing Algorithm.
1: procedure AUDITING

2: Pre: Cp, F + getCheckpoint AndLedger ()
30 verify(SIG,, e, SIGsig)
4: if getRoot(M) U getRoot(PMT') # G then
5: undo(t); return
6: end if
7. ¢ = (commit,v,G)
8: sendToAllReplicas(c); M < M U {c}
9: for all{tx) € getTxForBatch(L,v) do
10: sendReplyToClient({tz, v, EV}))
11: if verifyEvidence() A getConflicts() = () then
12: MisbehaveN odes < replayLedger(F, Cp)
13: end if
14: end for

15: end procedure

V. EFFICIENT PARALLEL PROCESSING

In this section, we give a specific explanation of how we
design a novel parallel processing workflow for efficient cross-
chain collaboration.

The key observation is that in the Byzantine failure mode,
the most common mode of transaction execution is CPU-centric
processing, the tasks in consensus like message broadcasting and
transaction executing are merely CPU-based workloads. Based
on this fact, we apply the hardware accelerator by utilizing the
idle GPU resource to improve cross-chain efficiency and sys-
tem performance. Algorithm 3 describes the parallel processing
workflow. In our system architecture, the GPU-based workload
handles tasks related to the consensus committee configuration.
We utilize a lightweight improved GCN model, LightGCN, for
validator election and committee formation. The CPU-based
workload manages consensus tasks such as broadcasting, or-
dering, and executing transactions. To optimize throughput and
latency, we implement parallel transaction execution using mul-
tiple threads on the CPU. Concurrent conflicts are resolved
through deterministic execution strategies, ensuring consistent
and reliable transaction processing.

A. Consensus Committee Configuration

First, the validator election proceeds for every chain during
which the participating nodes independently execute Light GCN
model training and return the model output to the leader of the
intrachain consensus. Then, the leader in each chain constructs
the consensus committee based on the node classification from
the output. The workflow of the LightGCN model is shown in

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:38:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: DeCross: TOWARD ACCOUNTABLE AND EFFICIENT CROSS-CHAIN COLLABORATION IN lIOT 7

Algorithm 3: Efficient Parallel Processing.

Input: 1.A set of received transactions {txy, tx,. ..} 2.The
snapshot of the ledger state L.S; based on last block B;
Output: Block B, and the ledger state snapshots LS,
1: Initialize two transaction batches {tzBatch};4 and
{txBatch};is;

2: Initialize version number of all keys {key.VeNum}
3: for all validators parallel do

4. GPUExecute(B;);

5: CPUExecute({txBatch}; 11, LS;);

6: end for

8: function GPUEXECUTEDB;
9: G = (V,E) < GraphConstruction(B;);
10: P, + ModelTraining(G);
11: {Validators}chain < MembershipC’onfig(ﬁi);
12: end function
14: function CPUEXECUTE{tzBatch}it, LS;
15: for alltx in tz Batch parallel do

16: {tx.R,tx W} + EzecuteTx(tx)
17: {txBatch}; | < DetectConflict(tzx)
18: end for

19: Commit {¢txBatch};4 to update B,y and LS; 1
20: end function
22: function DETECTCONFLICTtx
23: Initialize key. NewVeNum = key.VeNum
24: for each key in tz. W do

25: if key. NewVeNum = key.VeNum then
26: key.NewVeNum + +;

27: else

28: {txBatch};y| < Remove(tx)

29: {txBatch}; s < {txBatch};1, U tx;
30: end if

31: end for

32: end function

Fig. 4, which includes graph construction, graph learning, and
node classification.

1) LightGCN: Specifically, we apply an improved graph con-
volutional network LightGCN as the learning model. This model
is trained for cross-chain consensus committee configuration.
The key challenges are: i) Since the IIoT nodes on different
chains may be deployed across geographic regions, the sta-
ble and low-latency network for cross-chain communication is
critical. ii) The states and performance of the IIoT nodes also
determine the system throughput, optimal and honest nodes
should be elected as validators. Besides, the joining/leaving
of the nodes to the committee requires reconfiguration of the
consensus membership. In this section, we propose LightGCN
to simultaneously consider the network condition and the node
status for highly efficient cross-chain collaboration through
graph construction and graph learning.

Graph construction: We construct a directed graph G =
(V, E) from the transaction records in each block as model input.
Each vertex v € V describes the blockchain node characteristics
and is represented as vz, = [fi, f2, 5], where f] and f represent

the transaction frequency sent from vy, and vy, received, respec-
tively. s describes the historical frequency of the node chosen as
validators. Each edge e € F is represented as (vj, vg, t), where
v;,vr € V indicates the transaction sent from v; to vi. We
introduce ¢ to represent the type of the transaction between nodes
since the transaction type may vary in different scenarios, e.g.,
read/write key-value, modify smart contracts. We then split the
graph into multiple subgraphs, each with a particular edge type.
To represent different types of transactions, we use the adjacent
matrix set {A4;, 4,..., A;} instead of a single adjacent matrix
to calculate for ¢ type edges. To further increase the accuracy
of the result of the validator election, we add a set of latency
matrices for each edge type to synthetically evaluate the network
condition.

1) Transaction propagation latency P': Bach p}; € P" rep-
resents the average transaction propagation latency from
node 7 to node j in the last block.

2) Transaction processing latency QQ": Each qu € Q¢ rep-
resents the average transaction processing latency from
node 7 to node j in the last block.

Graph learning: we then define the layer-wise propagation
rule for graph learning based on the graph input, the forward
updating is formulated as

Sigmoid (apt; + Bqt;

h§l+1) Y Z Z g (dip:] ﬁqu) Wt(l)hy)
teT je N;‘ ’

)
where hz(-l) is the hidden state of vertex v; in the [y layer of
LightGCN and the [y, layer input is composed of the set of all NV
vertexes’ hidden states. «, 3 are hyperparameters that represent
the weights of transaction propagation latency and transaction
processing latency. The weights can be adjusted according to the
link stability, bandwidth, and congestion status of the intrachain
network. di]‘t = |N}| - tanh(3_; aj;) represents similarity coef-
ficient where | N/ | is the number neighboring nodes of v; in edge

type t and aﬁj € A, W,El) is the model weight matrix of edge
type t in the [y, layer.

2) Consensus Committee Formation and Leader Rotation:
Node classification: After training, we get the classification
probability vector of being a high-performance node among [NV
nodes from the model output: ' = (m;, m,...m,,). Based on the
results of node classification, we rank the probability among the
N nodes. We then calculate the consensus node penalty (CNP)
for each node to select the validators:

CNP; = m;(1 — Sigmoid(N*™¢)). 6)

m; is the classification probability of node i and NP*™ is the
number of times a node has been blamed for misbehaving during
the last £ consensus epochs. The historical malicious behavior is
considered to evaluate the node as well. The Sigmoid function
is for normalization. Then, all nodes are ranked according to
CNP. We apply a sliding window for the election of validators
and the leader. The window size k is the same as the number of
cross-chain consensus nodes. It is adaptive to make sure that at
least one node of each involved chain is elected. The nodes with
the top & highest CNP are elected as validators for cross-chain

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:38:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

communication. If a validator is found to be misbehaving and is
blamed during auditing, the window slides to the right to replace
the faulty node.

For leader rotation, since Byzantine nodes may collude with
clients to order requests unfairly. In this case, they may behave
honestly but repeatedly acquire leadership to continuously de-
rive benefits. To prevent monopolies in leadership, we calculate
the consensus leader penalty (CLP) for each validator in the
sliding window

CLP; = aCNP; e
a = 1 — Sigmoid(N}eader),

To calculate CLP, the CNP is multiplied by an attenuation factor
a (a < 1). ais related to N which represents the number
of times a node has become a leader during the last £ consensus
epochs. « takes into account the historical leadership of the
validators to avoid monopoly from a particular node. Our design
provides efficiency, security, and fairness in leader rotation.
When a view change request is requested, the validator with
the highest CLP in the sliding window excluding the current
leader is elected to be the new leader.

B. Multithread Transaction Execution

Since serialized transaction execution can cause high latency,
in this section, we introduce the parallel multithread transaction
execution to accelerate cross-chain transaction processing. As
blockchain systems handle transactions and update the ledger
in batches, we adopt the snapshot isolation where transaction
execution is based on the snapshot of the last block, and each
state is stored as (key, value, version) in the blockchain. In
DeCross, transactions are executed concurrently in different
threads and then committed. However, this method may induce
many read-write conflicts: i) Write-and-write (WW) Conflict.
One transaction writes a key and a later transaction reads the
key. The stale read occurs since the updating of the key is
not included in the reading result of the later transaction. ii)
Write-and-read (WR) Conflict. One transaction writes a key
and a later transaction rewrites the key. The stale update occurs
since the modification operation of the later transaction is based
on the key in the snapshot, not the latest value of the key.
Normally the write of a key is allowed once in each block to
avoid WW conflicts and a high abort ratio.

We address the WW and WR conflicts easily by leveraging the
pre-execution in the sequence phase. The key observation is that
if each key is strictly written at most once in a block, the conflicts
can be eliminated. Thus, in DeCross, the leader will prepare two
consensus proposals {txBatch};; and {txBatch};, simultane-
ously, but broadcast them one by one. If a key in a transaction’s
write set has been written, the transaction is moved to the second
consensus proposal. During the sequence phase, the leader packs
transactions into {txBatch}; | and pre-executes the transactions
based on the last snapshot to produce the read and write set.
Each version number of a key VeNum is increased by 1 if a
transaction writes it. As shown in Algorithm 3, the transactions
in {txBatch},, are detected using the write set. For each key
in a transaction’s write set, if the key’s version number has been

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

increased, the transaction is moved to {txBatch}; ., to avoid
abortion.

VI. SECURITY AND CORRECTNESS

In this section, we give a detailed analysis of the security and
correctness properties of DeCross.

A. Security Analysis

Lemma 1: DeCross satisfies reliability: Proof. Each ordering
block is certified with at least 2f 4 1 signatures, of which
at least f + 1 signatures are from honest replicas. An honest
replica only accepts one ordering block at a position after the
current checkpoint. Based on the quorum intersection, the blocks
delivered by honest replicas at the same position in the ledger
must be identical.

Theorem 1: DeCross safety (accountability guarantee): All
honest nodes within the same chain commit the same sequence
of blocks; all honest replicas across different chains commit
cross-chain blocks in the leader-defined order.

Proof: To prove the accountability always held in DeCross,
let Sj, be a sequence number where there is an invalid signature in
the consensus messages. The auditor can get the first checkpoint
transaction that follows .S}, that has no invalid signatures in its
evidence. If it exists, the auditor can assign blame to all N —
f replicas that signed that checkpoint transaction. If no such
checkpoint transaction exists, the auditor can assign blame to
the responding replicas.

For malicious leaders, accountability is guaranteed by com-
bining the auditing evidence and the view-change protocol.
When the leader tampers with the ordering and execution
of requests, a view-change is triggered by honest replicas if
they do not receive N — [attestations within a timeout after
receiving the request. The corresponding evidence fragment
is returned to the client to prevent misbehaving view-change
proposal.

An auditing request returns all evidence that is necessary for
the auditor to assign blame to misbehaving replicas if the receipts
reflect any linearizability violation. Auditing ensures that each
replayed transaction can be used to reconstruct the correspond-
ing raw block. The checkpoint mechanism ensures consistency
of the global ordering across different replicas and provides
necessary prerequisites for auditing. All honest nodes commit
the same sequence of blocks after applying the deterministic
accountability-preserving cross-chain protocol.

Theorem 2: DeCross liveness: All blocks proposed by honest
nodes are eventually committed or aborted.

Proof: Given our assumption that the system operates under
a partial-synchronous network, both the sequence stage and evi-
dence generation stage can make progress with the participation
of 2f + 1 malicious nodes. In the commitment stage, the timer
mechanism utilized in the partial-synchronous BFT protocol
ensures the liveness of the consensus when leader blocks are
missed, while the timer mechanism used during cross-chain val-
idation ensures the liveness in the event of malicious validation
leaders. Consequently, all replicas in the cross-chain committee
are eventually committed or aborted.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:38:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: DeCross: TOWARD ACCOUNTABLE AND EFFICIENT CROSS-CHAIN COLLABORATION IN 1IOT 9
" 1600
120 +— DeCross % +— DeCross +— DeCross
—— CrossChannel @ 1200 —4— CrossChannel o 14001 —+— CrossChannel P *
@ 100 —*— zkBridge & —*— zkBridge E1200] —* zkBridge -
g —— AC'WN)¢ pet AC'WN pet AC'WN
L 3
2 g0 & 1000 & 1000
= @ on &n
% 2 2 800
60 * = 800 =
= P = £ 600
+
0 — 600 400
600 800 1000 1200 1400 200 400 600 4 8 12 16 20
Throughput (tps) Transaction Size (B) Bandwidth (Mbps)
(@ (b) ©
Fig. 5. Performance compared with different cross-chain schemes. (a) Throughput versus latency in different modes. (b) Throughput with various

transaction sizes. (¢) Throughput in different bandwidths.

B. Correctness Argument

Lemma 2: DeCross satisfies completeness and validity.

Proof: Lemma 1 has already proven that the blocks delivered
by honest replicas at the same position in the ledger are identical.
Since each ordering block carries at least 2f 4 1 references
to blocks from the previous consensus round, honest replicas
simultaneously reach an agreement on the referenced blocks
from the previous round. Besides, a committed transaction tx
has been endorsed by the committed consensus confirmation,
which consists of N — f votes, which means it must have been
signed and verified by at least 2 f + 1 validators.

Theorem 3: Consistency: If two honest validators are in-
volved in two consensus instances containing blocks with the
same sequence number, the two blocks are identical.

Proof: We denote the two blocks as BC; and BC,. If they
are processed in the consensus instances with the same view,
it holds that BC, equals BC,. If they are committed in two
instances with different views, since a view-change message
is successfully advanced after collecting 2f + 1 view-change
messages, we could declare that at least one honest replica has
verified the block or sent the view-change message. Thus, the
conflicting block is ordered in the consensus with a new view
with the same sequence number.

VII. EXPERIMENTAL RESULTS

We implement a prototype of the DeCross based on Hy-
perledger Fabric v2.4 and build on both LAN and WAN. Our
LAN deployment contains 96 locally connected nodes and the
WAN deployment contains 64 nodes on 11 cloud servers. To
simulate in a real environment, we extract historical Ethereum
transactions and randomly sample 30% to replay using the
proposed scheme.

We explore and tune hyperparameters by cross-validation on
a rolling basis to achieve the peak cross-chain throughput. The
LightGCN model has two hidden layers and each layer has 16
units. The optimal number of layers is small due to the low
node feature dimension and the 2-layer network is the most
informative through validation. The model is trained every 10
consensus rounds with Adam optimizer for 100 epochs. We set
the dropout rate to 0.5 to avoid overfitting. The graph neural

network runs on a server with an Intel Xeon (Ice Lake) Platinum
8369B CPU (32 cores), 128 GB of RAM, and Nvidia 3060 GPU.

We consider three baselines: zkBridge [14] achieves secure
cross-chain communication through zero-knowledge proofs
without trust assumptions. ACWN [12] is another decentralized
cross-chain protocol for atomic transaction commitment. Cross-
Channel [15] establishes cross-and-off-chain payment channels
to realize efficient cross-chain transactions.

1) Overall Performance: We measure the peak throughput
results and the corresponding latency. Fig. 5 reports the overall
performance of DeCross compared to the baselines. We can see
that the proposed scheme exhibits higher throughput than the
others under all workloads.

Fig. 5(a) illustrates the throughput and the latency. Cross-
Channel outperforms the other two decentralized cross-chain
approaches since it off-loads the cross-chain consensus to the
off-chain payment channels thus reducing the on-chain over-
head. DeCross even achieves higher performance than Cross-
Channel due to our efficient parallel workflow design. Fig. 5(b)
and (c) describes the throughput with varying transaction sizes
and bandwidths. Fig. 6(b) describes the throughput with differ-
ent IIoT applications deployed in the cross-chain system. De-
Cross continuously achieves the highest throughput regardless
of changes in the above metrics. Besides, DeCross improves the
throughput by 38%-44% against the two decentralized schemes
and 21% against the centralized scheme.

2) Scalability and Failure Case: In this part, the scalability
parameter w represents the scale of the network and the max-
imum scale is 64 nodes. Fig. 6(a) shows the commit ratio of
cross-chain transactions with scaling networks. The commit
ratio of DeCross maintains a high level continuously (more
than 85%), and the latency remains the lowest. The performance
degrades slightly with larger network scales due to extra com-
munication costs and network bandwidth constraints. We also
conducted experiments under Byzantine failures. In Fig. 6(c),
the throughput of our method exhibits the highest level with in-
creasing dishonest nodes. The auditing procedure timely detects
collaborative misbehavior and corrects the ledger.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:38:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue o

f this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

10
100 1400
~ BB DeCross EBSZ DeCross
X 95 [Z—2 CrossChannel 7= CrossCh: 1
o rossChannei
\O/ E=S zkBridge EINO E=3 zkBridge
g %0 ACWN < EED AC'WN
~ 5 1000
2
9 8 £
= 800
80 g
2 E
3 75 = 600 =
) ab FH
70 a0 BEVN B
0.1 0.3 0.5 0.7 0.9 1 2
Scalability Parameter w
(@)
Fig. 6. Performance with varying conditions. (a) Commit ratio with scal

ughput with different number of malicious validators.

1400

2 DeCross
F—Z CrossChannel
E=3 zkBridge
EE) AC*WN

1200

=
3
3

0
S

Throughput (tps)

-
S
S

(LT T T T T T ETTIT]

RS S~ N N~
{TITITITITI 1T

N B B B

0
i
i
i
el
i
el
I
i
I
1
4

400

o
o

Varying number of malicious validator

(©)

(b)

ing network. (b) Throughput with different number of lloT apps. (c) Thro-

+— DeCross 64 § BN CPU
1201 round-robin 2 \g/ 80 73 GPU
’;;100 —#*— random '8 g
£ ? 8% g 6
) ! £ =
[St
=} , 5} = =]
% /’ S 16 View Change 8 40
— 60 $ BN Sequence g
Z E== Evidence Generation 8 20
40 .~ o i 8 B Commitment &"
0
600 800 1000 1200 1400 0 50 100 150 200 300 600 900 1200 1500
Throughput (tps) Average latency (ms) Transaction request (tx/s)
(a) (b) ()
Fig. 7. Consensus Performance. (a) Performance of leader-rotation. (b) Latency of different phases. (c) Resource utilization with varying loads.

3) View-Change and Resource Utilization: Fig. 7(a) presents
consensus performance with different leader-rotation methods.
Our method outperforms the two baselines in terms of through-
put and latency. Besides, our method evaluates nodes in terms of
efficiency, security, and fairness simultaneously, which means
the elected leader has a higher probability of behaving honestly
and correctly. To evaluate the cost of the view change process,
we present the average latency of each consensus phase, shown
in Fig. 7(b). The latency of the view change phase maintains
the lowest. On the one hand, our communication complexity
is O(n) since the broadcast pattern is similar to Hotstuff [20].
On the other hand, our CLP of validators is calculated after
the sliding window is updated, instead of calculated during
leader rotation, which further reduces view change cost. Fig. 7(c)
describes the average resource utilization of GPUs and CPUs
under different transaction loads. The CPU utilization has a
slight increase when the transaction request is less than the peak
throughput (about 1400 tps), and has a rapid increase when
the load becomes higher because the input rate exceeds the
output rate. The average GPU utilization remains at a low level
since it collects transactions after several rounds of consensus
and then begins processing. The periodic information exchange
between the CPU and GPU such as replicating model output
and sharing transaction information may induce small resource
competition. The probability of scheduling conflicts occurring
is low since the CPU and GPU execute relatively independent

tasks in our work: cross-chain transaction execution and GCN
model training. However, through the experiment, we find the
potential to improve GPU utilization, such as scheduling tasks
of executing transaction batches in GPU.

VIIl. CONCLUSION

In this article, we present DeCross, a cross-chain consensus
protocol for multichain collaboration in IIoT. DeCross achieves
accountable and efficient cross-chain communication by
introducing an accountability-preserving cross-chain protocol
with parallel transaction processing. Empirical evaluation shows
that DeCross achieves 44% higher throughput compared to the
advanced baseline protocol. In our future work, we will study
fairness-aware ordering of the cross-chain transactions.

REFERENCES

[1] J. Sengupta, S. Ruj, and S. D. Bit, “A comprehensive survey on attacks,
security issues and blockchain solutions for IoT and IIoT,” J. Netw.
Comput. Appl., vol. 149, 2020, Art. no. 102481.

A.H.Khanetal., “Blockchain and 6G: The future of secure and ubiquitous
communication,” IEEE Wireless Commun., vol. 29, no. 1, pp. 194-201,
Feb. 2022.

M. J. M. Chowdhury et al., “A blockchain-enabled circular economy:
Collaborative responsibility in solar panel recycling,” IEEE Ind. Electron.
Mag., vol. 18, no. 3, pp. 45-62, Sep. 2024.

M. B. Mollah et al., “Blockchain for the Internet of vehicles towards
intelligent transportation systems: A survey,” IEEE Internet Things J.,
vol. 8, no. 6, pp. 4157—4185, Mar. 2021.

[2]

[3]

[4]

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:38:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: DeCross: TOWARD ACCOUNTABLE AND EFFICIENT CROSS-CHAIN COLLABORATION IN [IOT 11
[5] N. U. Hassan, C. Yuen, and D. Niyato, “Blockchain technologies for [14] T. Xie et al., “zkBridge: Trustless cross-chain bridges made practical,” in
smart energy systems: Fundamentals, challenges, and solutions,” /EEE Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2022, pp. 3003-3017.

Ind. Electron. Mag., vol. 13, no. 4, pp. 106—118, Dec. 2019. [15] X. Luo, K. Xue, Q. Sun, and J. Lu, “CrossChannel: Efficient and scal-

[6] V.Buterin, “Chain interoperability,” R3 Res. Paper, vol. 9, pp. 1-25,2016. able cross-chain transactions through cross-and-off-blockchain micropay-

[7]1 N. Shadab, F. Houshmand, and M. Lesani, “Cross-chain transactions,” in ment channel,” IEEE Trans. Dependable Secure Comput., vol. 22, no. 1,
Proc. IEEE Int. Conf. Blockchain Cryptocurrency, 2020, pp. 1-9. pp. 649-663, Jan./Feb. 2025.

[8] S. Lin, Y. Kong, and S. Nie, “Overview of block chain cross chain [16] G. Zhang and H.-A. Jacobsen, “Prosecutor: An efficient BFT consensus
technology,” in Proc. IEEE Int. Conf. Meas. Technol. Mechatron. Autom., algorithm with behavior-aware penalization against Byzantine attacks,” in
2021, pp. 357-360. Proc. Int. Middlewave Conf., 2021, pp. 52-63.

[9] J. Poon and T. Dryja, “The Bitcoin lightning network: Scalable off-chain ~ [17] P. Civit, S. Gilbert, and V. Gramoli, “Polygraph: Accountable Byzantine
instant payments,” 2016. Accessed: Jan. 14, 2016. [Online]. Available: agreement,” in Proc. Int. Conf. Distrib. Comput. Syst., 2021, pp. 403—413.
https://lightning.network/lightning-network- paper.pdf [18] A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel, “Accountable

[10] G. Wood, “Polkadot: Vision for a heterogeneous multi-chain framework,” virtual machines,” in Proc. USENIX Symp. Oper. Syst. Des. Implement.,
White Paper, vol. 21, no. 2327, 2016, Art. no. 4662. 2010, pp. 119-134.

[11] J. Kwon and E. Buchman, “Cosmos whitepaper,” Netw. Distrib. Ledgers, [19] Y. Du, H. Duan, A. Zhou, C. Wang, M. H. Au, and Q. Wang, “Towards
vol. 27, pp. 1-32, 2019. privacy-assured and lightweight on-chain auditing of decentralized stor-

[12] V. Zakhary, D. Agrawal, and A. El Abbadi, “Atomic commitment across age,” in Proc. Int. Conf. Distrib. Comput. Syst., 2020, pp. 201-211.
blockchains,” in Proc. VLDB Endow., 2020, pp. 1319-1331. [20] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “HotStuff:

[13]

B. C. Ghosh, T. Bhartia, S. K. Addya, and S. Chakraborty, “Leveraging
public-private blockchain interoperability for closed consortium interfac-
ing,” in Proc IEEE Conf. Comput. Commun., 2021, pp. 1-10.

BFT consensus with linearity and responsiveness,” in Proc. 2019 ACM
Symp. Princ. Distrib. Comput., 2019, pp. 347-356.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:38:09 UTC from IEEE Xplore. Restrictions apply.

https://lightning.network/lightning-network-paper.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

