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Abstract
In recent years there has been a rapid increase 

of short video traffic in CDN. While the video con-
tributors change from large video studios to distrib-
uted ordinary end users, edge computing naturally 
matches the cache requirements from short video 
network. But distributed edge caching exposes 
some unique characteristics: non-stationary user 
access pattern and temporal and spatial video pop-
ularity pattern, which severely challenge the edge 
caching performance. While the QoE in traditional 
CDN has been much improved, prior solutions 
become invalid in solving the above challenges. 
In this article, we present AutoSight, a distribut-
ed edge caching system for short video network, 
which significantly boosts cache performance. 
AutoSight consists of two main components, solv-
ing the above two challenges respectively: the 
CoStore predictor, which solves the non-station-
ary and unpredictability of local access pattern, 
by analyzing the complex video correlations; and 
a caching engine Viewfinder, which solves the 
temporal and spatial video popularity problem by 
automatically adjusting future horizon according 
to video life span. All these inspirations and exper-
iments are based on the real traces of more than 
28 million videos with 100 million accesses from 
488 servers located in 33 cities. Experiment results 
show that AutoSight brings significant boosts on 
distributed edge caching in short video network.

Introduction
In recent years, many short video platforms 
are developing at an incredible speed (such as 
Kuaishou [1], Youtube Go [2], Instagram Stories 
[3] and so on). These platforms allow users to 
record and upload very short videos (usually with-
in 15 seconds). As a result of the massive short 
videos uploaded by distributed users, the caching 
problem is becoming more challenging compared 
with the traditional centralized Content Delivery 
Network (CDN) whose traffic is dominated by 
some popular items for a long period of time. To 
handle scalability, fairness [4] and improve users’ 
Quality of Experience (QoE), the emerging edge 
computing naturally matches the demand for dis-
tributed storage. The above mentioned platforms 
thus have resorted to employ edge caching serv-
ers to store and deliver the massive short videos, 
so as to avoid that all requests have to be fetched 
from the backend/origin server, which usually 
introduces extra user-perceived latency.

There have been tremendous efforts toward 
better caching performance in traditional CDNs, 
and these caching algorithms can be classified into 
two categories. The simple but effective reactive 
caching algorithms, such as First In First Out (FIFO), 
Least Recently Used (LRU), Least Frequently Used 
(LFU), k- LRU and their variants, and the proac-
tive caching algorithms, such as DeepCache [5]. 
These prior solutions work well in traditional cen-
tralize-controlled CDNs, but become invalid in the 
emerging short video networks, where is naturally 
implemented with distributed edge caching. Here 
are the two essential differences.

User Access Pattern Is Non-Stationary: The 
basic assumption of traditional caching policies is 
the stationary user access pattern, that is, recent-
ly requested or frequently requested content in 
the past should be kept in cache because such 
policies assume that these contents have great-
er chance of being visited in the future. A study 
in [6] shows that in short video networks, popu-
lar contents always become expired very quickly 
(within tens of minutes), indicating that the pop-
ularity in the past could not represent that in the 
future, and this is the root cause of the failure of 
these reactive policies.

Video Popularity Pattern Has Spatio-Tempo-
ral Characteristics: Our study on the workload 
of Kuaishou shows that video popularity changes 
in different patterns during different time periods. 
For example, during peak hours, it takes less than 
one hour for a popular video to become unpop-
ular, while during late midnight, such invalidation 
takes more than three hours. Existing caching pol-
icies that try to predict future content popularity 
always focus on a fixed horizon, thus they fail in 
the edge caching scenarios.

To address the above challenges, this article 
presents AutoSight, a distributed caching mecha-
nism that works in edge caching servers for short 
video networks. AutoSight allows edge servers to 
retain respective local caching sight to adapt to 
local video access patterns and video life spans. 
AutoSight’s distributed design is built on two 
empirical observations: 
•	 Although the historical video access data is 

non-stationary on individual edge servers (Fig. 
1), making it difficult to make popularity pre-
dictions, there is sufficient correlations among 
videos within the same edge server, because 
users tend to request related videos, contrib-
uting much cross visits in edge servers, and 
thus improves distributed predictions.
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•	 Temporal and spatial video popularity pat-
terns bring challenges for future sight of 
caching policy (Fig. 2), but distributed design 
allows adaptive future sights, enabling edge 
servers to make decisions according to dif-
ferent video expiration speeds.
We have implemented a prototype of Auto-

Sight and evaluate it with Kuaishou data traces. 
Experiments show that AutoSight achieves much 
higher hit rate compared with both reactive cach-
ing policies and the state-of-the-art proactive cach-
ing policies.

Our contributions are summarized as followed:
•	 Characterizing Kuaishou’s workload of short 

video network to motivate the need for dis-
tributed edge caching policy.

•	 Presenting AutoSight, a distributed edge 
caching mechanism working in edge caching 
servers for short video network, which solves 
the problem of non-stationary user access 
pattern and temporal/spatial video popular-
ity pattern.

•	 Demonstrating the practical benefits of Auto-
Sight by real traces.

Related Work
Here we discuss some representative caching pol-
icies in traditional CDN and some related edge 
caching systems.

Existing Caching Policies
The most representative caching policies 
such as FIFO, LRU, LFU and their variations 
are simple but effective in traditional CDN, 
where the frequency of content visits can be 
modeled as Poisson distribution. Under these 
policies, the future popularity of a content is 
represented by the historical popularity. But 
in short video network, user access pattern is 
non-stationary and is no longer in Poisson dis-
tribution, so these policies become inefficient 
in short video network. The same problem 
exists in the TTL-based (Time-To-Live) caching 
policies. For example, in the caching (feed-
forward) networks, where the access pattern 
is Markov arrival process, the authors in [7] 
gives joint consideration about both TTL and 
request models, and drives evictions by stop-
ping times. The authors in [8] set an optimal 
timer to maximize cache hit rate, but it only 
works in the case of Pareto-distributed access 
pattern and Zipf distribution of file popularity, 
thus certainly becomes invalid in short video 
network. The authors in [9] propose two cach-
es named f-TTL with two timer, so as to filter 
out non-stationary traffic, but it still relies on 
locally observed access patterns to change TTL 
values, regardless of the future popularity.

One of the promising attempts in recent years 
is learning-based proactive prediction-based 
policy. The authors in [5] train a characteristics 
predictor to predict object future popularity and 
interoperates with traditional LRU and LFU, boost-
ing the number of cache hits. However, it looks 
a fixed length into the future to predict object 
popularity (one to three hours, 12–14 hours and 
24–26 hours), ignoring the temporal and spatial 
video popularity pattern, thus cannot handle the 
varied life spans in short video network. Pensieve 
[10] trains a neural network model as an adap-

tive bitrate (ABR) algorithm. It complements our 
AutoSight framework, in the sense that the pro-
posed dynamic control rules can give us a refer-
ence when facing the various life span problem, 
but it ignores temporal pattern information and 
only works in live streaming. The authors in [11] 
introduce reinforcement learning for making 
cache decisions, but it works in the case that user 
requests comply with the Markov process, while 
the proposed AutoSight in this article can work 
under arbitrary non-stationary user access pat-
terns. 

Edge Caching Systems
Edge computing was proposed to enable off-
loading of latency-sensitive tasks to edge serv-
ers instead of cloud, and has achieved rapid 
development in many ares such as 5G, wireless, 
mobile networks [12] and video streaming [13]. 
The authors in [14] study the content place-
ment problem in edge caching to maximize 
energy efficiency. The analysis in this work gives 
us references to design our AutoSight network 
topology, but what we considered under such 
topology is the caching of short video network 
rather than energy-saving. The authors in [13] 
propose a geo-collaborative caching strategy 
for mobile video network, suggesting that joint 
caching over multiple edges can improve QoE, 
which provides strong proof for our AutoSight 
design. While this article tries to reveal the char-
acteristics of different mobile videos, we focus 
the short video network on edge servers with 
unique user access pattern and video popularity 
pattern. The authors in [15] consider a network 
caching setup, comprising a parent node con-

FIGURE 1. Non-stationary video access pattern.
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FIGURE 2. Temporal and spatial video popularity 
pattern.
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nected to several leaf nodes to serve end user 
file requests They propose an efficient caching 
policy leveraging deep RL, and show capable of 
learning-and-adapting to dynamic evolutions of 
file requests, and caching policies of leaf nodes, 
which provides strong support to our AutoSight 
design.

Background
Before introducing the caching problem, we start 
by characterizing the short video network, illus-
trating the essential differences with traditional 
CDN. Then we show the limitations of existing 
schemes and draw lessons from real-world traces 
to inform the design of AutoSight. The findings 
are based on real datasets from Kuaishou’s cach-
ing network collected during four days, from 9 
Oct. 2018 to 12 Oct. 2018.

Characteristics and Challenges
Short video platforms allow users to upload sec-
onds of videos (usually within 15 seconds) to the 
network. Such convenience on content upload-
ing and accessing finally leads to a revolution in 
the way network works and the way videos are 
cached.

Non-Stationary User Access Pattern: In tradi-
tional caching system, user access pattern is sta-
tionary, in other words, the popular contents at 
present still have a higher likelihood of receiving 
more accesses in the next moment. But a study 
in [6] shows that due to the short life cycle of 
short videos, popular contents always become 
expired very quickly (within tens of minutes), indi-
cating that the popularity at present could not 
represent that in the future. Figure 1 shows the 
requests number of two particular videos v1 and 
v2, from which we can see the non-stationary of 
the user access pattern (with sudden increase and 
decrease). In the first two minutes, v1 receives less 
requests while v2 receives more, but the access 
pattern reverses in the second minute (request 
burst on v1 while valley on v2). There is also a sim-
ilar reverse in the fifth minute. Therefore, tradi-
tional caching policies become invalid due to the 
non-stationary access pattern, and a new popular-
ity prediction algorithm in short video network is 
in urgently needed.

Spatio-Temporal Video Popularity Pattern: In 
short video network, video popularity changes 
in various patterns. According to our study on 
Kuaishou workloads, it takes less than one hour 
for a popular video to become unpopular during 
peak hours, while such invalidation takes more 
than three hours during late midnight. Figure 2 
shows the life spans of two videos from an edge 
server but appear in different time periods, which 
are significantly different from each other. This 
figure illustrates the variability of video life span 
during different time period, and similar situa-
tions also occur among different edge servers, 
which means that in some temporal and spatial, 
videos get expire at different speeds. This finding 
motivates us to equip our caching engine with 
auto-adjusted future horizons, and here we pres-
ent the definition of Future Horizon. The algo-
rithm Viewfinder will be described later.

Definition 1: Future Horizon: It represents 
how far into the future to plan the caching. It is 
the length of future time t, during which period of 

time, the predicted video popularity could repre-
sent the popularity of a current video.

Limitations of Existing Solutions
Realizing caching improvement of short video 
network has some complications. As a first order 
approximation, we planned to simply borrow 
existing techniques from traditional CDN. But the 
above two characteristics results in inefficiency of 
existing approach that will be described below.

Key Observation 1: The non-stationary access 
pattern makes the heuristic reactive caching poli-
cy invalid.

Explanation: In the traditional stationary net-
work scenario, heuristic reactive caching policies, 
such as LRU and LFU, can work well by replac-
ing the least used videos. But in short video net-
work with non-stationary access pattern, as the 
case shown in Fig. 1, those policies will eject v1 at 
the second min, because v1 is less recently used 
and less frequently used in the first two minutes. 
However, v1 got more accesses than v2 during 
the third minute, resulting in less caching hit and 
lower overall hit rate. This is because under the 
non-stationary access pattern, video popularity in 
the past could not represent that in the future, 
and the ejected video at the second minute 
should be v2 rather than v1. This simple example 
shows the invalidity of heuristic reactive caching 
policies.

Key Observation 2: Spatio-temporal video 
popularity pattern on different edge servers and 
at different time periods make the fixed-horizon 
proactive caching policy inefficient.

Explanation: When making video popularity 
prediction, existing learning-based proactive cach-
ing policies always look a fixed length into the 
future, that is, future horizon = Dt, which is a fixed 
length window, and their output is a sequence 
of k future popularity probabilities, where k rep-
resents the number of probabilities to predict 
during the future Dt time. Such policies work well 
in traditional caching systems, but in the short 
video network scenario, the average video life 
span on different edge servers or during different 
time periods significantly varies from each other; 
there is no “one size fits all.” In the case shown 
in Fig. 2, if future horizon t is set to two hours, 
even through those policies can have 100 percent 
prediction accuracy, the one would be ejected 
at 50th minute is v1 rather than v2, because the 
predicted popularity of v1 is less than that of v2 
in the next two hours. But in reality, v1 is much 
more popular than v2 in the near future. Ejecting 
v1 will obviously downgrade the performance. 
This example shows the invalidity of the fixed-hori-
zon proactive caching policy.

AutoSight Design
The core of AutoSight is a distributed caching 
algorithm that makes adaptive caching for edge 
servers. There are two main components in 
AutoSight: a correlation analyzer named CoStore, 
which solves the non-stationary access pattern 
problem by analyzing the videos correlations; 
and a caching engine named Viewfinder, which 
solves the temporal/spatial popularity problem 
by automatically adjusting horizon to adapt to 
different edge caching server during different 
time periods.
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System Overview

AutoSight takes an explicit stance that it works 
the distributed edge caching servers to handle 
the non-stationary user access pattern and tem-
poral/spatial video popularity pattern, significantly 
boosting the cache hit rate in the setting of short 
video network. AutoSight uses a correlation-based 
predictor that predicts the number of times a 
video will be requested by making real time 
analysis of videos’ cross visits, and uses a cach-
ing engine with adaptive future horizon to make 
caching decisions. The framework of AutoSight is 
shown in Fig. 3. The workflow can be summarized 
as follows.
•	 AutoSight is implemented in edge servers. 

It receives both visits from local users and 
cross visits from other edge servers.

•	 When the requested videos are stored in 
local cache memory (called “cache hit”), the 
edge server sends back the videos directly. 
When the requested videos are not stored in 
local cache, the edge server makes a cross 
visit to other edge servers, and then sends 
the obtained videos to the requestor.

•	 When the requested videos are not stored 
in other edge servers either (called “cache 
miss”), such videos would be downloaded 
from backend servers (where all videos are 
stored).

•	 To ensure the video completeness of the 
back-end servers, all of the uploaded videos 
would be stored in backend servers.
The ultimate goal of AutoSight is to increase 

the number of cache hits and eliminate cache 
miss, so as to reduce the request response time. 
We therefore define the hit rate by cache hit/
(cache hit + cache miss). In the following CoSto-
re and Viewfinder design, we try to improve the 
overall hit rate.

Correlation-Based Predictor: CoStore
Although short video network has non-station-
ary popularity, that is, video popularity in the past 
could not represent that in the future, we also 
found that past video correlations could provide 
much information to make future popularity pre-
diction [6]. This is because the video correlations 
in short video network is much informative due 

to the frequent cross-visits. For a particular video 
with low popularity, it possibly gets higher pop-
ularity if its correlated videos already have high 
popularity. 

Inspired by the long short term memory 
(LSTM) network that has already shown its dom-
inance in natural language processing (NLP), 
machine translation and sequence prediction, 
CoStore is built on LSTM, using video correlations 
as input features, and predicting request numbers 
within the future horizon. In particular, for video vi 
at time t, the input consists of two sets of access 
sequence: S1 = {r1

vi, r
2
vi, …, rt

vi } and S2 = {r1
vj, r

2
vj, …, rt

vj}, 
where rk

vi denotes the request number of vi at time 
k, and vj is the most related video to vi at time t. 
The output of CoStore is the expected request 
number of vi during the future horizon Dt.

Caching Engine: Viewfinder
As edge caching servers are experiencing tem-
poral and spatial video popularity pattern, inap-
propriate future horizon Dt (too short-sighted or 
too long-sighted) always leads to inefficient or 
even wrong caching decisions. We therefore 
design Viewfinder, which can adjust future hori-
zons automatically. Viewfinder aims at finding a 
suitable horizon for future prediction. In different 
time frames, it outputs different horizons through 
on a reinforcement algorithm, and this horizon 
is the time window for CoStore to predict video 
popularity.

The challenge here is that there are too many 
options to explore (in the granularity of seconds/
minutes), which introduces unacceptable over-
head. Viewfinder changes it into a classification 
problem that chooses Dt from a predefined set: 
Dt = {60min; 120min; 160min; 180min; 200min; 
360min}.

This significantly reduces the computation 
overhead, and the experiment results show that 
Viewfinder works well in edge caching servers, 
disclosing that the quicker videos get expired, the 
shorter-sight the caching policy should be.

Evaluation
In this section, we evaluate our approach Auto-
Sight using real traces, and show the results of 
applying AutoSight on them versus the existing 
representative policies.

FIGURE 3. The design of distributed edge caching and the framework of AutoSight.
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Experiment Setting
Algorithms: We compare AutoSight with four 

existing solutions: FIFO, LRU, LFU and LSTM-
based prediction scheme without the auto-adjust-
ed future horizon.

Datasets: We analyze the traces from two cit-
ies with 1,128,989 accesses to 132,722 videos 
in 24 hours. Each trace item contains the time-
stamp, anonymized source IP, video ID and URL, 
file size, location, server ID, cache status and con-
sumed time. Thus we can deploy and evaluate 
different caching policies.

Performance Comparison
We first provide dataset introduction and analy-
sis about these two cities, then we compare the 
overall hit rate on edge servers among five differ-
ent caching policies. After that, we look into the 
proposed AutoSight and show the power of View-
finder with auto-adjusted future horizons.

The Power of Viewfinder: To evaluate the 
effect of the caching engine Viewfinder with the 
auto-adjusted future view, we show the cache 
hit rate with Viewfinder set to fixed D t. Fig. 4 
shows the corresponding cache hit rate under 
different future horizons. The optimal value for 
each period varies with time, that is, during late 
midnight when video life span is longer, View-
finder tends to be long-sighted, while during the 
leisure time (e.g., 20:00-21:00pm) when video 
life span is shorter, Viewfinder also tends to be 
short-sighted. These results further emphasize 
the necessity of Viewfinder with adaptive future 
horizon.

Overall Cache Hit Rate: As analyzed previ-
ously, the non-stationary access pattern would 
make the reactive caching policy inefficient, and 
the temporal/spatial video popularity pattern 
also invalidates learning-based policies with fixed-
length future horizon. Figure 5 shows the overall 
cache hit rate of applying the five policies. Auto-
Sight outperforms all the existing algorithms.

Conclusion
In this article, we analyze the Kuaishou dataset 
and use trace-driven experiments to motivate and 
investigate edge caching performance for short 
video network. We first disclose the characteris-
tics on non-stationary user video access pattern 
and temporal/spatial video popularity pattern, 
and illustrate the invalidation of existing caching 
policies by giving two real cases. Then we design 
AutoSight, a distributed edge caching system for 
short video network, with CoStore and Viewfind-
er. Results show that enabling AutoSight in edge 
caching servers could significantly outperform the 
existing algorithms.
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