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Abstract— With the ever-increasing deployment of 5G and
IoT, the number of end-hosts/terminals is increasing rapidly,
so that routers have to cache more and more forwarding entries
to guarantee communication reachability of these terminals,
which makes Ternary Content Addressable Memory (TCAM)-
based routers keep expanding resource requirements. However,
the design and implementation of large-capacity TCAM-based
routers are faced with such challenges: difficult circuit design,
high production cost and energy consumption, thereby posing
an urgent requirement on a lightweight TCAM that can still
maintain those massive communication connections. In this paper,
we aim to design a lightweight router with small storage require-
ment while still retaining the original communication connection
performance, which is not straightforward due to the following
two challenges: First, under the condition of massive sequential
flow data, it’s difficult to accurately and timely select the entries
to cache for a small capacity TCAM. Second, given the strict
prefix matching principle, how to efficiently insert the selected
entries into TCAM is also challenging. To address these prob-
lems, we propose A&B: an AI-based Routing entry prediction
strategy (AIR) and a Block-based entry Insertion Tactic (BIT).
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AIR can precisely select entries by conducting accurate entry
predictions, which converts dynamic flow-based prediction into
stable and parallelizable entry-based prediction by decoupling
spatio-temporal characteristics. BIT optimizes entry insertion
by isolating TCAM into several blocks, thus eliminating the
time-consuming entry movements. The experiment results based
on real backbone traffic show that our lightweight A&B achieves
comparable performance compared to the traditional schemes by
using only 1/8 TCAM storage.

Index Terms— TCAM, router, AI, prediction.

I. INTRODUCTION

TERNARY Content Addressable Memory (TCAM) is an
essential unit of routers for storing and querying routing

entries, which assists in making fast forwarding decision based
on IP address of packet header. However, the capacity of
TCAM becomes one of the bottlenecks to accommodate the
rapid growth in physical terminals that access to the Internet
accelerated by 5G and the Internet of Things (IoT).

The growth of the number of entries is raising high require-
ments for TCAM both on capacity and efficiency [1]. The
current TCAM-based commercial core routers have to scale
TCAM capacity to keep up with the growth of entries, while
the expansion from 512,000 to 900,0001 will naturally result in
high production costs and electricity consumption [2]. More-
over, the large-capacity TCAM also involves circuit design
constraints [3]. Therefore, crudely expanding the capacity of
TCAM in strawman way is not a sustainable solution to satisfy
future network demands [4], [5], and it is urgent to design a
kind of small-capacity TCAM-based routers while maintaining
the original packet forwarding performance.

To design such an efficient lightweight small-capacity
TCAM is not straightforward which is faces with two fun-
damental challenges: Entry selection and Entry insertion.

• Entry selection: In order to have a higher query hit
rate, which entries should be stored in TCAM with
limited capacity? The traditional “insert if missed” update
strategy results in highly frequent replacement under
small-capacity TCAM, which would severely decrease
query efficiency and is therefore impractical in core
routers [6]. Leveraging prediction to make replacement

1The Cisco Catalyst 6500 series, such as WS-SUP720-3BXL, VS-S720-
10G-3CXL and RSP720-3CXL-GEthe, the default IPv4 TCAM size is
512,000 and the maximum value is 1,000,000.
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decisions is a potential approach, which would face two
challenges of accuracy and efficiency. (1) The predic-
tion accuracy determines the coverage ability of packet
queries of TCAM with limited capacity, and then how to
accurately predict each future flow based on complicated
and uncertain aggregated time-sequential flows data is a
challenge. (2) As the network link rate grows rapidly from
100Mbps to 100Gbps [7], routers must be able to achieve
the same line-speed in packet lookup and forwarding.
While the existing prediction algorithms on individual
entries cannot satisfy such timeliness requirement [8], [9].
Then, how to linearize the prediction algorithm is another
challenge.

• Entry insertion: How to insert those selected entries into
TCAM efficiently? The longest prefix matching principle
generates dependencies between entries with the same
prefix, which makes entries have to keep the relative
pre-post relationship between the dependent entry set
when stored in TCAM. Therefore, the update of TCAM is
a complex process. When inserting one entry, its related
dependent entries also need to be inserted jointly, which
may require the entries stored in TCAM to be moved sev-
eral times to free up a proper space for the corresponding
entries [6], [10]. It is a challenge to optimize the process
of entry insertion of TCAM and make it more efficient.

To address forementioned challenges, in this paper,
we present an efficient lightweight TCAM-based router frame-
work, A&B, which consists of two components: an Artifi-
cial Intelligence (AI)-based Routing entry prediction strategy
(AIR) and a Block-based routing entry Insertion Tactic (BIT).

• AIR decouples the future flows prediction based on com-
plicated and uncertain aggregated time-sequential flows
data to a denumerable individual routing entry prediction
issue, and on that basis, parallelizes the LSTM-based
prediction calculation. Such decoupling and parallelizing
enhance both accuracy and efficiency of the prediction
model.

• BIT, based on the traffic skewed distribution and proba-
bility segmentation, extremely loosens the strict restric-
tions on the relative pre-post relationship of the dependent
entry set stored in TCAM.

We have implemented a prototype of A&B and evaluated
it using real traffic from a backbone network [11]. The
experiment results show that A&B achieves similar forwarding
performance with only 1/8 capacity or even less. We also
show that A&B can effectively handle different Wide Area
Networks (WANs) with various traffic characteristics.

Our contributions are summarized as follows:
• Characterizing the backbone network’s workload from the

perspective of router traffic to motivate the requirement
of a lightweight TCAM entry replacement scheme. (§III)

• Presenting AIR, an AI-based TCAM entry prediction
scheme that achieves the identical forwarding perfor-
mance by decoupling entry aggregations and parallel
execution. (§IV)

• Proposing BIT, a block-based TCAM entry insertion tac-
tic that successfully loosens the strict storage restrictions

of dependent entries stored in TCAM, and thus enhances
the update efficiency. (§V)

• Demonstrating the practical benefits of A&B by a
real-world backbone network playback. (§VI and §VII)

This paper is organized as follows. We review related work
and motivations in § II. In § III, we describe the overall
structure of A&B. In § IV and § V, we detailedly introduce
the two modules of A&B, AIR and BIT, respectively. We then
conduct extensive evaluations and show the results in § VI
and § VII. We conclude the paper in § VIII.

II. RELATED WORK AND MOTIVATION

In this section, we review related works of routing entry
lookup and TCAM, and present the motivation of our A&B
design.

A. Related Work

1) Routing Table Lookup: Traditional routing entry lookup
methods can be classified into two categories: software-
based searching algorithms and hardware-based match-action
mechanism.

The software-based entry lookup is a kind of classic
approach, which mainly stores prefixes in trie structure in
binary way [12]–[17]. Stefan et al. used a single node
to replace all previous complete subtrees based on the
level-compressed tried to further reducing the forwarding
table space [16]. SAIL divided routing entries into three
levels, level 16, 24 and 32, which can achieve a satisfactory
lookup performance due to less level visiting requirement [13].
Another alternative way is based on the hash table [18]–[22].
Waldvogel et al. organized the hash table according to the
prefix length and stored the routing prefixes in different linear
hash tables with different lengths [18]. CoLT exhibited a
great memory efficiency and can launch parallel lookup over
tables during every lookup due to its hash tables permit mul-
tiple possible buckets to hold each prefix [21]. Additionally,
some works used bloom filter to perform the entry lookup
task [23]–[28]. However, time-varying forwarding table needs
to frequently reselect hash functions, which will reduce hash
performance and increase update difficulty.

As the link rate of the backbone increases, the tradi-
tional CPU-based software-based lookup algorithms have been
unable to meet the lookup demands of high-speed communi-
cation systems. Then Graphics Processing Unit (GPU) is used
in some works to assist in accelerating the entry lookup due to
its excellent parallel capabilities [29]–[31]. Younghwan et al.
employed integrated GPU in Accelerated Processing Unit
(APU) platform to achieve multi-10 Gbps performance for
many compute/memory-intensive algorithms [31]. The above
software-based lookup algorithms are highly flexible, and the
performance can be enhanced by the parallel processing capa-
bility of the GPU, however, they still suffer from the lookup
speed limitation essentially due to the inherent characteris-
tics. Usually, Field Programmable Gate Array (FPGA)-based
entry lookup strategy needs to address two main issues: how
to store all routing entries information on the chip and how to
construct pipeline stages [32]–[34]. Some works proposed to
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Fig. 1. TCAM lookup structure.

Fig. 2. Dependency of entries.

compact data structure and store a part of the data by using
hashing [35]–[38], and some strategies proposed to adjust
the trie structure by rotating some branches to balance stage
size [39]–[41]. A complex search algorithm will increase the
logic complexity of the FPGA, resulting in clock frequency
trade-offs.

2) Ternary Content Addressable Memory: TCAM is a
three-state content addressing memory that can provide 0, 1,
and x (ignored) matches and can match of all routing entries
according to the entered key value in one clock cycle, then
it returns the address of the matched entry. When there are
multiple matches caused by the x state, it will by default hit
the entry with lowest stored address of all matched entries,
i.e., the entry stored at lower addresses in TCAM has higher
priority.

Given the three-state characteristic that is suitable for the
longest prefix matching, TCAM has been widely used for
rule-based entry lookup and packet classification [42]–[45],
whose structure of lookup is shown in Figure 1.

Thus, the storage of entries in TCAM has to follow the prin-
ciple of relative pre-post location relationship, which means
that for entries with the same prefix, all entries must be
stored in the lower address location than those entries with
shorter masks. As shown in Figure 2, 102.1.23.24/32
is stored lower than 102.1.23.0/24 to ensure the packet
with destination IP address 102.1.23.2 to be forwarded to
correct port eth0, otherwise, the packet would be forwarded
to the wrong port eth4. It should be noted that the mask
length represents entries’ priority. Hence, some entries stored
in TCAM may have to be moved to free up a suitable location
for the newly inserted entry, even if there are some free spaces
with high address. As an analysis, inserting a single entry for
a 1K entry-set requires a maximum of 466 entry-moves [6].
To solve this problem, RuleTris reduced the average moves per
entry insertion to about 10 times by the designed algorithm,
however, it is time consuming and causes unacceptable latency
in calculating the movement scheme [10]. In addition, a more

complicated issue exists, e.g., if only 102.1.23.0/24 is
stored in TCAM according to the cache rules, then those
packets which should matched to like 102.1.23.1/32,
102.1.23.16/28, etc., will also be forwarded incorrectly.
Due to the entry dependencies, when entry e should be
inserted into TCAM, theoretically all dependent entries with
mask are longer than e must also be inserted into TCAM
jointly to guarantee the correctness of the matching result,
even if the caching policy does not require these dependent
entries. Especially, for TCAM, the move operations and query
operations can only be performed serially, so updating the
TCAM may significantly decrease the query performance.

3) TCAM Optimizations: To address the issue that TCAM’s
capacity can hardly meet the growth of routing entries, the
series of Rasor-based works [46]–[48] are pursued from
the perspective of compressing entry table, but minimizing
the number of entries for a single switch is computationally
difficult. With this, some studies investigated how to efficiently
and accurately decompose a large table stored at network
ingress into several smaller sub-tables and distribute them
across network switches [49]. Using TCAM as a cache can
also alleviate this problem from another perspective, which,
however, introduces hit rate, content updates, and other chal-
lenges [50]. Sheu et al. leveraged a sophisticated algorithm
according to temporal and spatial traffic localities to select
entries for better TCAM hit-rate [51]. It requires multiple
cumulative calculations from entry nodes to the root node
in the entry dependency directed acyclic graph (DAG) to
obtains the most appropriate cached entry-set in each update
of TCAM. However, it is difficult to provide timely cached
results for the lightweight TCAM scenario of this paper.
T-cache crafted dependency-free rules in cache update and
used statistical-based strategy to select cached rules [52].
CacheFlow divided all entries into several subsets according
to dependencies to improve TCAM efficiency [53]. However,
such proactive schemes are limited in the ability to generate
entries dynamically based on the evolving network. Inspired
by the advantages of prior studies, in this paper, we propose
an AI-based entry selection strategy for TCAM caching that
can still employ the existing schemes to alleviate the effect of
entry dependencies from entry table perspective.

Several researches are conducted from the perspective of
TCAM updates. Bohan et al. designed a TCAM update opti-
mization framework that can guarantee consistent forwarding
during the entire update process [54] and Ying et al. proposed
a batch update algorithm which collectively evaluates and
optimizes the TCAM placement for whole batches through-
out [55]. Zixuan et al. proposed a strategy that compre-
hensively considers hit rate and update efficiency, and the
algorithm can improve update efficiency by sacrificing hit
rate [56]. Kun et al. devoted to avoiding unnecessary entry
moves when inserting entries through complex algorithms
which computes over the entire TCAM [57], but there is still
room for achieving the ideal TCAM entry move reduction.
Shah et al. designed a TCAM management scheme based
on prefix-length of entries [58], but the skewed distribution
characteristic of traffic is not considered. As such, we propose
a block-based scheme for TCAM management, which can
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TABLE I

PROPORTION OF EACH PREFIX-LENGTH ENTRIES

eliminate the effect caused by the dependency of entries when
inserting new entries and avoid movements of the entries
stored in TCAM, thereby eventually improving the update
efficiency of TCAM.

4) AI-Based Methods: In recent years, more and more
researchers focusing on AI have proposed good network
models which are widely used in various fields, such as
analysing images, summarizing documents, speech recogni-
tion, etc. Shunsuke et al. designed a forwarding information
base (FIB) storage structure based on learned index, which is
less than half of an existing trie-based FIB while it achieves
the computation speed nearly equal to the trie-based FIB [59].
NeuroCuts [60] and NuevoMatch [61] proposed the AI-based
method to construct a decision tree for fast packet classifica-
tion. However, the essence of these studies is still to utilize the
software-based tire structure to perform the lookup. He et al.
proposed a meta-learning scheme to improve the accuracy by
predicting different categories of traffic separately and then
integrating results into a overall traffic prediction result [62].
It allows to train an individual predictor to adapt to a new
category of traffic, but it is only applicable to traffic granularity
prediction problems. Moreover, some studies applied AI to
deal with caching strategy issues. Zhang et al. introduced an
additional attribute, i.e., the spatial feature of short videos,
to predict popularity through a graph convolutional neural
network model [63]. DeepCache architecture proposed in [8]
accounts for predicted information of objects to make smart
caching decisions, which, however, is hard to cope with pre-
diction tasks with large-scale objects like routing entries. The
FreeCache proposed in [9] tackled the large-scale prediction
objects problem by indexing and mapping, but it will introduce
additional overhead in each prediction. In addition, the above
scheme needs to maintain the temporal relationship between
objects, which makes it difficult to parallelize the prediction
process. Then, how to ensure the timeliness of prediction
results becomes a challenge. Therefore, we proposed a paral-
lelizable entry prediction algorithm with temporal and spatial
characteristics decoupling.

B. Motivations

We characterize the workload of a core router located in
New York backbone network [11], and disclose the oppor-
tunities of designing a decoupled and parallelized AI-based
prediction solution and an effective entry insertion tactic.

• Traffic skew distribution. The traffic presents a Zipf-like
skewed distribution, i.e., a small number of flows are
contributing to the majority of traffic, even 5% flows
can contribute more than 90% traffic [11], [64]. This

natural distribution property provides an opportunity to
leverage a small capacity TCAM while maintaining the
high lookup performance by predicting hot entries.

• Stable and independent routing entries. Numerous
flows and their dependence present the challenges to
prediction algorithm. However, the number of entries
of a RIB is relatively stable, and more importantly, the
access frequency of entry is independent of each other.
It is artful to switch the flow prediction problem into the
entry prediction problem, and decouple the relationship
between entries, which provides feasibility for prediction
in routing lookup scenarios.

• Isolation of the same prefix-length entries. To sat-
isfy entries’ pre-post location constraint introduced by
their dependencies, the update process of TCAM may
involve complicated entry movements, which is compu-
tationally intensive and time-consuming. Then, trying to
achieve lightweight TCAM through delicate replacement
mechanism faces entry insertion challenge. Fortunately,
entries with the same prefix length are isolated from each
other, i.e., the above mentioned constraint is non-existent
between them. Besides, the proportion of the number of
each prefix-length accessed entries over a time interval is
relatively stable,2 as shown in Table I, which provides a
new idea to accelerate the entry update of TCAM.

The aforementioned observations and analyses co-motivate
the desirability of customizing the AI and block-based
approach to realize a lightweight TCAM.

III. A&B SYSTEM OVERVIEW

In this section, we first describe the sketch of A&B briefly,
and then present the framework and core-structure of two main
modules, AIR and BIT, respectively.

A. Sketch of A&B

The overall architecture of A&B is shown in the Figure 3,
which concentrates on the TCAM-based entry lookup part.
It consists of two main core modules, AIR and BIT. AIR is
mainly related to the prediction of TCAM storage elements
by traffics, while BIT is concerned with updating the TCAM
by the prediction results in an efficient way.

B. Framework of AIR

The overall structure of AIR is shown in the bottom rectan-
gle of Figure 3, which can be outlined as three workflows.

2The number proportion of each different prefix-lengths accessed entries in
per 106 queries, and the min, max and average values are calculated from
more than 10 continuous periods.
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Fig. 3. A&B architecture.

1) Entry Decoupling: The original time-series data of
flows in router is variable and extra-long, which is
unpractical for prediction. Therefore, it is decoupled into
entries access frequency data in the sub-module marked
with a purple dashed circle in Figure 3. The consecutive
historical access frequency data of the each entry still
maintaining the time-dimension characteristics, which
will be used as input to the subsequent module.

2) Parallel Prediction: The access frequency of each entry
of the next period can be predicted by the AI model,
which is the basis for determining whether the entry
is hot or not, i.e., whether it should be inserted into the
TCAM. The decoupling of first stage individualizes each
entry computation and makes the parallelized prediction
model practical, which guarantees the timeliness perfor-
mance of the whole algorithm. This phase is marked
with an orange dashed circle in Figure 3.

3) Entry Classification: On the basis of the predicted
next-period access frequency, all entries can be divided
into two categories depending on the set threshold TS,
i.e., entries that are accessed less frequently than the
threshold are classified as non-hot, otherwise, as hot,
which will be inserted into TCAM. This phase is marked
with a red dashed circle in Figure 3.

The skewed distribution of traffic makes it valuable to
optimize TCAM utilizing prediction. Firstly, AIR converts
a flow prediction issue into an entry prediction task, thus
enhancing the accuracy of prediction. Secondly, due to the
requirements of linear speed processing in network scenarios,
AIR tactfully decouples entries, which not only parallelizes the
prediction process so that the prediction results can fulfill the
network scenarios, but also enables prediction granularity and
interval to be more flexible. Moreover, the threshold TS can
be tuned according to the network status, which can enables
AIR to adapt network dynamic variations better. The details
are given in § IV.

After our proposed entry decoupling, it is possible to use
statistical methods to accomplish the functional requirements.
However, statistical methods like moving average algorithms
perform satisfactory on data with relatively stable trends.
However, based on the statistics of real traffic, there are a

large proportion of entries with relatively large fluctuations in
hotness, in which case the learning model-based will perform
better. Therefore, in order to accurately predict the hotness of
all entries, we decided to use the LSTM model.

C. Core-Idea of BIT

The core idea of BIT is shown in Figure 3. There are
dependent relationships between routing entries with the same
prefix but different mask-lengths, which is the main issue that
leading to the complicated content updates of TCAM. In a
nutshell, BIT divides all routing entries into different groups
based on the mask length and virtually isolates TCAM into
different blocks. According to the mask length of the entry,
the block stored is specified, where the longer the mask length
is, the lower the address of the corresponding block in TCAM,
which is determined by the query characteristic of TCAM.

In this way, the complicated influence of dependent relation-
ships on TCAM update can be eliminated, making the update
process more efficient. The details are demonstrated in § V.

D. Explanation

A&B proposed in this paper mainly focuses on scaling
down the required TCAM resources. The traditional TCAM
update methods require highly frequent entry replacement
to update such small-scale TCAM, which are accompanied
by a significant amount of computation and execution of
the corresponding dependent entries movements scheme, i.e.,
the traditional methods are hardly applied directly in the
small-scale TCAM scenario. Given the skewed distribution
of traffic, AIR selected high-frequency entries accurately for
updating TCAM based on prediction results of the LSTM-
based model. Hence, AIR minimizes the number of replace-
ments of entries while ensuring the TCAM hit rate compared
with the traditional method. In the complexity of calculation
and execution of dependent entries movements scheme, BIT
eliminates such operations that are required the traditional
method.

IV. AI-BASED ENTRY PREDICTION

In this section, we describe AIR in detail, including pre-
diction algorithm and some optimization schemes. Table II
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Fig. 4. AIR parallelization.

TABLE II

NOTATION DESCRIPTION OF AIR

summarizes the common notations and parameters in the
description of AIR.

A. Design Principles

The design of AIR is driven by the following three
principles:

• Proper Prediction Granularity.
Prediction based on flow level is challenging, and such
a massive number of flows would result in huge state
space. AIR takes a new perspective and focuses on
corresponding entries of aggregated flows. The number
of entries is relatively stable, thus its state space is much
smaller than that of flows, which significantly reduces the
computing overhead. In addition, the results of prediction
of entries will be more accurate.

• Data Decoupling.
The dynamic of traffics makes the selection of model
inputs very difficult. If the input sequence is selected at
a fixed time interval, the number of selected flows would
be ever-changing, which makes the prediction algorithm
invalid. If the input sequence is selected in a fixed-length
way, it is necessary to make real-time adjustments based
on traffic status to retain characteristics. Additionally,
it requires tens of thousands or even longer sequence
lengths to capture the data characteristics. The dynam-
ically variable and ultra-long traffic sequence data is
quite challenging for prediction model. In AIR, we cal-
culate each entry access frequency independently, thus
decoupling the sequence dependencies. In this way, the
subsequent prediction module can parallelly predict the
next period access frequencies of the entries based on
the historical data.

• Dynamic Prediction Interval.
When the network traffic is relatively stable, frequent
prediction operations are not necessary since the hot
entries are already stored in the TCAM. When the

Fig. 5. Prediction model structure.

network fluctuates, however, it is necessary to increase
the prediction frequency to update the TCAM in time.
In AIR, this matter is tackled by using dynamic prediction
intervals, which can be set and adjusted flexibly according
to the traffic status.

B. AIR Methodology

1) Entry Decoupling: As described in above sections,
the issue of flow prediction based on the aggregated
time-sequential traffic data can be formulated as follows.

(P (SIP ,DIP )
ei,n , P

(SIP ,DIP )
ej ,n+1 , P

(SIP ,DIP )
ek,n+2 , . . .), (1)

where P
(SIP ,DIP )
ei,n denotes that the coming flow at time t is

packet ei with source IP SIP and destination IP DIP . Such
traffic is the aggregated sequential data from all the flows
with different sources and destinations, making the prediction
extremely difficult.

In AIR, we try to address this problem from a different
perspective by decoupling each flow from the aggregated
traffic. We set a periodic interval Δt, and transform the origin
flow sequence data into entry accessed frequency, and for each
entry ei, the frequency prediction problem can be denoted as
follows:

xei

t+(n+1)∗Δt
= f(xei

t , xei

t+Δt
, . . . , xei

t+n∗Δt
), (2)

where xei

t+Δt
means that at time interval t to t + Δt, entry ei

appears x times.
It should be noted that the interval Δt is strategically set to

be dynamically adjusted, which is lower for fluctuating traffic
than for stable traffic. Moreover, the required number of period
of historical data to predict next period frequency is different,
which will be less for stable traffic than for fluctuating traffic.
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In practice, the appropriate number of data history can be
selected by refereeing the prediction accuracy in the offline
training process of the model.

2) Parallelization: Although the flow sequential data has
been decoupled into entry access frequency data, the cen-
tralized prediction of a large number of entries makes the
timeliness of the prediction results not guaranteed. As shown
in the Original Method of Fig. 4(a), assuming that the time to
predict an entry is Pt, then the entry prediction results delay
in the worst case is N ∗ Pt, where N is the total number of
entries to be predicted. The decoupled entries are independent
from each other, then it is not necessary to put all the entry
predictions in one time period. Therefore, we design a parallel
prediction scheme.

AIR divides all entries of the RIB into disjoint groups (DG)
and sets different packet count-based statistic start flags for
each DG. To ensure consistency in the statistical period of
each entry, each entry only belongs to a single DG. The best
case is to averagely divide the entries of the same access
frequency range into each DG based on the historical data,
which can ensure that all DGs can avoid an extreme situation,
such as the entries within a DG that all with high access
frequency. One should note that the entries in the same DG
have no dependencies except that they have the same start/end
triggers of the statistics period, so the division of entries can
also be adjusted flexibly according to the changes of network
flows. As shown in Parallel Method in Fig. 4(a), the globally
defined packet counter is maintained by the router. When each
entry is accessed, its corresponding access frequency counter
is added by 1. Since each DG has different start flag, assuming
that DG1 starts its statistics from the ith packet and DG2 from
the jth packet. When the (i + n)th packet arrives at the
router, where n is period-length IL, the next period frequency
of entries of DG1 will be predicted based on the access
frequency at that interval (i.e., the latest statistics period) and
historical data, and update the TCAM caching according to
the prediction results. Then, a new statistics period will be
started when the (i + n + 1)th packet arrives. Similarly, the
entries of DG2 are triggered to be predicted at the arrival of
(j+n)th packet, and its new statistics period will be started at
the arrival of (j+n+1)th packet. Lastly, the worst prediction
result delay is (N/d) ∗ Pt, where d is the number of DG.

The detail architecture of parallelization is shown in the
Figure 4. The access frequency data of the entries obtained
from the forwarding module. Since the independent of each
entry, the counting phase does not need to consider the
grouping restriction and directly performs a +1 operation on
the counter of the corresponding access frequency. A series of
operations will be triggered at the end of each statistical period
of each DG. The latest statistical results of this DG from the
statistical array combined with corresponding historical access
frequency data from historical data array will be input to
the prediction module, which will process predict calculation
according to this data. And the latest data will also be stored
in the historical data array, then the corresponding value of
this DG in the statistical array will be cleared to start the
next period statistics.

Algorithm 1: AIR Algorithm

1 entry_statistic(): return DGi that should be predicted;
2 decouple_entry(i): return decoupled entries of DGi;
3 get_hisdata(e): get entry e historical data array;
4 LSTM_predict(datae): predict e frequency;
5 entry_cla(TS, DGi_data): return hot entries of DGi;

Input: trigger signal
Output: a new prediction thread

6 while TRUE do
7 group_i = entry_statistic();
8 if group_i != None then
9 New_Thread: Pre_Fuc(group_i);

10 Function Pre_Fuc(group_i):
11 for e in group_i do
12 �N = get_hisdata(e);
13 Voutput = LSTM_predict( �N);
14 fre_data.append(Voutput);

15 hot_entries = entry_cla(TS, fre_data);
16 update_TCAM(hot_entries);

3) Algorithm Design: The pseudo code of AIR is shown
in Algorithm 1, and the function is described in detail. The
processes are as follows: (1) Triggering group prediction by
traffic measuring. (2) Obtaining decoupled entry data based on
traffic data. (3) Predicting entry frequency based on historical
data. (4) Getting hot entries from prediction results and
threshold values TS. (5) Updating the hot entries into TCAM.

a) Input and output: The historical access frequency
data for each entry is a one-dimensional vector, e.g., �N =
(n1, n2, . . . , ni)T , where the value with the smallest index
represents the access frequency of the latest Δt. The vector
is segmented by a sliding window with size n and step 1 as
the input �Ninput of the prediction model. n is the required
number of historical periods for prediction. And the output
Voutput of the prediction module is an integer that indicates
the predicted access frequency of the entry in the next period.
The prediction results of all entries can be used as reference
for TCAM update decisions.

b) Model structure and parameter settings: In the predic-
tion module of AIR, LSTM-based model is used to process
the prediction about time series characteristics. The over-
all model structure shown in Figure 5 which consists of
the following parts: two LSTM(units=128) layers, with a
Batchnormalization layer added in the middle to avoid
the gradient disappearance problem and to speed up the
model training, then a Dropout layer added to reduce the
occurrence of overfitting, finally a value output through a
Full Connection layer whose activation function is the relu
function. Moreover, the Adam optimizer and the mean square
error loss function are used for the model.

The prediction model will be used offline after it converges,
which can still be trained periodically or when the TCAM hit
rate decreases based on the latest entries access frequency data.

Authorized licensed use limited to: Tsinghua University. Downloaded on August 22,2022 at 07:45:14 UTC from IEEE Xplore.  Restrictions apply. 



2650 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 9, SEPTEMBER 2022

4) Optimization: Current commercial switches or routers
are configured with measurement and analysis tools, which
are linear processes. However, a great number of prediction
calculations will consume computational resources and cause
latency. An inefficient strawman way is to predict all entries
of a DG after each statistical period. Then the prediction is
optimized from the spatial aspect on the basis of parallelization
to alleviate this issue. Based on observations, it can be
confirmed with high probability that some entries will present
very low activity and will not even be accessed in the future,
then the computational resources occupied for these entries
are actually wasted. Hence, we attach constraints to filter out
the entries that are not worthy to predict in order to minimize
the computational burden. In addition, the prediction process
involves saving historical access data of all entries, which will
occupy a large amount of storage memory. We designed an
efficient data storage structure and strategy to optimize the data
storage of AIR. The specific design schemes will be presented
in detail below.

a) Entry filter: As described above, it is not necessary
to predict all entries of a DG within a processing cycle.
To reduce the complexity and time of prediction computa-
tions, we propose a pre-filtering strategy for entries. Before
performing the prediction operation, a portion of the entries
of DG which need to be predicted will be filtered. That is,
when the last few statistical periods frequencies of an entry
are all 0, then the next period frequency of this entry is set
to 0 by default without performing prediction operation. The
mathematical formulation of the entry filter is presented as the
equation (3).

xei

t+(n+1)∗Δt

=

{
f(xei

t , xei

t+Δt
,. . . ,xei

t+n∗Δt
),

∑K
j=0x

ei

t+j∗Δt
�=0

0,
∑K

j=0x
ei

t+j∗Δt
=0

(3)

where K represents the number of historical periods that need
to be observed.

It is possible to add a identifier to record whether the
historical frequency is 0 or not. Assuming that K = 8,
the array of identifiers for DGi is f [Ni], and Ni is the
total number of entries for DGi, then each identifier can be
recorded by an unsigned char data. Such as, the identifier
f [i] = 0 × 10(0001 0000) indicates that the access frequency
of the penultimate fifth period of entry ei is not 0 and the rest
is 0. And f [i] = 0× 00 indicates the ei is dead. Identifiers will
be updated when a new statistical period is completed. Taking
the example of updating the identifier of ei: First, moving
f[i] one bit left, i.e., f [i] � 1 = 0 × 20 (0010 0000), the
position corresponding to the original penultimate fifth period
is shifted left to the penultimate sixth, and the position of the
latest period will be set to 0 by default. If the access frequency
of ei in this new period is 0, then the update of this identifier is
complete; otherwise, the identifier needs to be or-operated with
0 × 01 (0000 0001), i.e., f [i] ‖ 0 × 01 = 0× 21 (0010 0001),
to revise the position corresponding to the latest period as non-
zero. The specific pseudo-codes are shown as Algorithm 2 and
Algorithm 3.

Algorithm 2: Predict With Filter
Input: identifier array f
Output: next frequency array n_f

1 for i in N do
2 if f [i] == 0 then
3 n_f [i] = 0;
4 else
5 n_f [i] = predict(data[i]);

6 return n_f ;

Algorithm 3: Identifier Update

Input: identifier array f and current frequency array c_f
Output: f

1 for i in N do
2 // f [i] = f [i] � 1;
3 if c_f [i]! = 0 then
4 //revise the bit of identifier of latest period as 1

f [i] = f [i] || 0 × 01;

5 return f ;

Fig. 6. Storage structure.

b) Storage: Given that the number of routing entries in a
real router is almost close to 106, it would be inefficient and
unacceptable to store a several periods of access frequency
data for all entries. Supposing that 100 periods of data are
recorded with unsigned short int, which will take 120MB
(32bit ∗ 106 ∗ 100) of on-chip storage space. From the obser-
vation of each entry historical frequency data, it is found
that when dead becomes active again, its recorded historical
access frequency is almost all 0. To reduce the storage space
requirements of AIR, we optimized the storage rules by adding
a 1-bit identifier for each entry to indicate its status, dead or
active. For the deads, it is unnecessary to store a large amount
of data, and all historical access frequencies are 0 by default.
The overall storage architecture is depicted in the Figure 6.
Due to the filter, the storage optimization of entries will not
affect the prediction at all, because the deads would have been
filtered out already. When the statistical register data shows
that the status of an entry changes from dead to active, its
identifier will be changed and its subsequent access frequency
will also be recorded. When the last K periods historical
access frequencies of an entry is 0, where K can be kept the
same as in Equation (3), then its corresponding identifier will
be modified and its storage space occupied by it will be free.
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The massive number of dead entries makes this optimization
strategy quite profitable.

V. BLOCK-BASED ENTRY INSERTION TACTIC

In this section, we describe the BIT optimization tactic for
entry insertion of TCAM in detail present a typical case. Then
we demonstrate the feasibility of BIT by analyzing real routing
entries and flows traffic.

A. BIT Methodology

The skewed distribution of traffic allows us to leverage
small capacity TCAM to handle massive entry lookups, which,
however, requires timely entry updates as the cost. AIR can
predict which entries will match maximum lookups percentage
in the next statistical period, and these entries should be stored
in TCAM. Then, how to insert selected entries into TCAM be
the twin problem.

1) BIT Description: As explained in §II, the dependent
relationship between entries makes it necessary to move some
entries stored in TCAM when inserting new entries into
TCAM to ensure that all entries in one dependent-set are stored
in order of address from low to high according to the prefix
length from long to short. All entries of a RIB form a directed
acyclic graph based on the dependent relationship. And the
equivalent prefix length entries are independent of each other,
that is, there are no direct relationships between any two of
them, which means that their relative position in TCAM does
not affect the match results. The independent of all equivalent
prefix length entries present an opportunity to optimize the
entry insertion process during TCAM updates. Under this
circumstance, we proposed a BIT strategy to optimize the entry
insertion process of TCAM. To keep it consistent, we take
routing entries corresponding to the IPv4 address as focus
description.

Hence, according to the match regulation that the lowest
address entry will be returned when there are multiple matched
entries, we divided TCAM into 25 different capacity parts
virtually from low address to high address by setting bound-
aries. BIT constrains all entries of different prefix-lengths can
only be stored in the corresponding block when inserted into
TCAM. Firstly, the order of divided blocks ensures that the
newly inserted entry will not affect its dependent entries stored
in other blocks. Then, since the entries in each block are all the
same prefix-length, i.e., the entries stored in the same block are
independent of each other. So, it is possible to directly insert
the new entry into the free space or overwrite the removed
entry according to the replacement algorithm.

The reason for not allocating TCAM space to 1-bit to
7-bit is that they are practically non-existent in almost all
RIBs that we researched. Besides, it is necessary to reserve
an additional one fixed space with the maximum address
of TCAM to store 0.0.0.0/0 for default forwarding. The
sketch of BIT TCAM is shown in Figure 7. In contrast to
the classical literature and the state-of-the-art tactics [6], [55],
[58], we take the influence of skewed traffic distribution on
entry accesses into consideration and design the BIT, an entry
access frequency-based TCAM storage constraint strategy.

Fig. 7. Block sketch.

Fig. 8. Insertion comparison.

2) An Instance: In the BIT way, the constraint of storage
range makes it possible to decouple dependent entries of
different lengths from each other in TCAM, thus avoiding the
movement of entries caused by finding the proper space during
the insertion process. For an entry that needs to be inserted,
it is simply to insert it into free space or rewrite the entry that
should be omitted from TCAM in the corresponding length
block. In the following, we will introduce the merit of BIT
structure over the off-the-shelf strategy with a clear illustration.

As shown in Figure 8, suppose 114.19.24.0/24 and
129.218.0.0/16 should be inserted into TCAM. For the
BIT scheme, 114.19.24.0/24 can be written into the free
space of the 24-bit range directly, and 129.218.0.0/16
can overwrite 223.206.0.0/16 that should be omit-
ted according to replacement rules. For the off-the-shelf
scheme, due to the dependent relationship, it is necessary
to move 114.0.0.0/8 and 114.19.0.0/16 to high
address to vacate a relative lowest address space to store
114.19.24.0/24.

It should be noted that these movements are in this relatively
simple case, however, in fact, the movements will be more
complex in the circumstance of a large number of entries
in TCAM. Then, the BIT scheme can greatly optimize the
entry update process. The reason is that, in this example, the
intentional omission of inserting (omitting) dependent entries
with high (low) priority of the appointed one is because neither
of these two ways affects the number of associate dependent
entries.

B. Feasibility Analysis

Based on the real Routing Information Base (RIB) from
CAIDA [11], we counted the numbers of entries corresponding
to different prefix length from three timescales: from 2007 to
2020 in years, from January to December of 2020 in months,
and from 1 to 31 of January of 2020 in days, respectively.
The results are shown in Figure 9, where all the lines in
Figure 9(a) show a similar trend and the lines in Figure 9(b)
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Fig. 9. Entry proportion.

and Figure 9(c) are almost completely overlapping. The con-
text of the stable proportion of each prefix length entry in RIB
drives us to speculate whether the entries stored in TCAM
also shown a stable distribution based on the prefix length.
Then, we respectively statistic dozens of periods of all matched
routing entries based on a real traffic from CAIDA in different
window steps, 105 and 104, the results of proportion of
different prefix length in each period are shown in Figure 10.
Entries with prefix length of 24-bit and 16-bit are the most
numerous two categories, which account for nearly 50% of
the total entries. The stable and skewed distribution of entries
access frequencies enables BIT to be feasible.

C. Dynamic Range

According the observation of Figure 10, for a series continue
flows, the ratio of different prefix length accessed entries
fluctuates slightly between each window step. So, storing
different prefix lengths entries into a fixed range may cause
improper utilization of TCAM resources. Suppose there is
no proper space to store when inserting an entry, including
no free space and no entries that can be removed from
TCAM, which indicates that the capacity of the corresponding
block is insufficient. Based on the insufficient degree, it can
dynamically tuning the store range of each prefix length
block by borrow from neighbors. The reason that it can only
borrow from direct neighbors is to ensure the continuity of all
ranges. When neighbors are not available for borrowing, based
on transferability, it is permitted to use the ranges between
the two as transit to borrow from a non-directly connected
block. The borrow only occurs when the distribution of the

Fig. 10. Accessed entries proportion.

Fig. 11. Borrowing sketch.

accessed entries changes and still follows the basic proportion
constraints.

AIR provides entry access statistical information, which can
be leveraged for the tuning process. The range pointers of
blocks can be adjusted at a certain time interval or period,
according to the access ratio of different length prefix entries.
Each range can be updated as per Equation (4), where R(i)
indicates the latest ratio of accessed entries of prefix length i.
That is, the range pointer of each block is updated in the
order of prefix length from small to large based on the latest
proportion.

Blockj = [(1 −
j∑

i=0

R(i)) ∗ size(TCAM)] (4)

The sketch of the borrowing process is shown in Figure 11.
Supposing a new entry inserting of the 24-bit range triggers
a borrowing operation. At this time, the neighbor of the
23-bit range is unavailable, but the 22-bit range has a free
space. First, entry 15.214.40.0/22 should be moved to
the free space to release the lowest address space of the 22-bit
range. This internal movement is to guarantee the continuity
of each range space during the borrowing process. Then, entry
19.28.23.0/23 will be moved to the newly released free
space. After updating related range pointers, the new entry,
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Fig. 12. Number of IPv6 entries from 2007 to 2021.

19.48.4.0/24, can be inserted into the highest address
of the 24-bit range (the lowest address of the original 23-bit
range).

D. Discussion

The BIT scheme is mainly proposed for IPv4 entries, so it
may generate an intuition that it cannot be extended for IPv6
lookup or Access Control List (ACL) due to the longer prefix
length or multiple match fields, which theoretically smashing
block ranges and further increasing its quantity. However,
in fact, there is still a turnaround in this intuition.

An IPv6 address is divided into two parts, the first 64 bits
represent the network address and the rest 64 bits represent the
host address. In fact, IPv6 entries present a better aggregation.
The results of our statistics on real IPv6 RIBs3 are shown
in the Figure 12, which also confirms this conclusion. For
multi-fields ACL lookup, the BIT is equivalent to dimen-
sionality reduction of IP address dimension. Therefore, it is
still possible to apply the existing algorithms in each block
independently, but the complexity of the computing is greatly
reduced.

VI. EVALUATION FOR AIR

In order to present the experimental results in a clear and
concise manner, we evaluate AIR and BIT independently in
two sections, and then show the comprehensive performance
of A&B. In this section, we clarify the experimental setup
and analyzed the performance of AIR with some existing
strategies.

A. Experimental Setup

The data that we use in our evaluation was collected on
January 17, 2019 from a core router of a backbone network
in New York [11], with each piece of data consists of a five
tuple with timestamps: 〈 time series, source IP, destination IP,
source port, destination port, protocol〉.

In this set of experiments, to shield the entries dependency
feature, which be evaluated in § VII, we re-aggregate all
appeared destination IP addresses in data-set to 24-bit mask
length entries. We assume that the set of all aggregated entries

3This dataset created on a daily basis, starting from 2005-05-09 for IPv4
and 2007-01-01 for IPv6 [65], [66].

is the entire entry-set, which ensures the overall implementa-
tion and feasibility. The total number of packets in the data
set is 1.3 × 108, including 6.6 × 105 different destination IP
addresses, and 8,598 re-aggregated entries. For larger number
of entries in real backbone network, AIR is still applicable.

The LSTM-based prediction model is implemented by Keras
on Ubuntu 16.04-LTS operating system, where the learning
rate is set to 0.001, the batch size is 64, the epoch is 30,
the initial weights and biases are generated randomly, and the
training optimizer is Adam. We select 1,124 historical periods
for each of the 8,598 entries and divide them into 1,024*8,598
data items by using a sliding window with size of 100 and step
size of 1. The label of each data item is the corresponding
access frequency of the next period. Among them, 60% as the
training set, 20% as the validation set, and 20% as the test set.
And the prediction model is used offline after it converges.
The traditional scheme mentioned in experiments of AIR is
based “insert if missed” replacement strategy, which selects
the removed entries randomly.

B. AIR Performance

We first evaluate the required TCAM size when there are
different number of entries (from 2,000 to 20,000 entries4)
in the traffic. For the fairness, different groups experiments
were conducted while keeping the hit rates of both algorithms
consistent. The experiment results as presented in Figure 13(a),
from which it can be seen that under the traditional scheme,
the required TCAM size increases linearly (from 2,000 to over
16,000) with entries scale. For AIR, the required TCAM size
is always around 2,000, which can save more than 8 times
of TCAM capacity. In the real network where the number of
entries is extremely over 20,000, AIR works even better.

From another point of view, different TCAM capacity sizes
will affect the hit rate and the number of entry replacements.
AIR and traditional schemes are simulated separately by set-
ting different TCAM sizes. The statistical period is set to 105,
and AIR selects the entries equal to TCAM size from high to
low according to the predicted frequency. In addition, the final
results of the two strategies are averaged over 170 periods.
With the increase of TCAM size, the accuracy of AIR and
traditional strategies are similar and exhibit an upward trend.
For any TCAM size, however, AIR has a significant advantage
over the traditional in terms of input replacement time. The
hit rate and replacement times of AIR and traditional schemes
are shown in Figure 13(b) and Figure 13(c).

C. AIR Analysis

1) Period Analysis: We set different lengths statistic periods
for the same traffic data set, 1 × 104, 2 × 104, 5 × 104,
1 × 105, 1.5 × 105, and 2 × 105. Apparently, for periods of
different lengths, the number of IPs or corresponding entries
appearing in each period is different. We count 200 periods
of different lengths separately, and the distributions of the
number of IPs/entries in each condition are shown in the

4The entries is expanded by extending the measurement span based on the
original data set.
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Fig. 13. AIR performance with the traditional strategy in TCAM size (a), hit rate (b) and replacements (c).

Fig. 14. Analysis of period.

box Figure 14(a) and Figure 14(b). As the length increases,
the number of IP/entry per period also increases significantly,
which makes us face the problem that a large number of
entries should be predicted in each prediction process. And this
situation also corresponds to the proposed filter mechanism.
In order to manipulate the time and resource consumption
of the prediction process, the period should not be set too
long. From another perspective, we analysed the regularity of
traffic and entries periodically and obtained the hot entries’
traffic coverage in subsequent periods. For different period
lengths, the traffic coverage of the top 20% hot entries in
the next 10 periods are shown in Figure 14. The longer the
period, the more stable the hot entries are. And vice versa, the
shorter the period, the more obvious the decrease in traffic
coverage of hot entries over time. Hence, setting a short
period not only increases the prediction frequency, but also
reduces the reliability of historical frequency-based prediction.
In combination with the above analysis, the appropriate period
length should be determined according to traffic and device
characteristics, and we choose 105 in this experiments.

2) Model Prediction Accuracy: As explained in § III,
we address the prediction challenge under aggregated flows
circumstance by decoupling entries and making prediction on
disjoint entry groups. Therefore, we evaluate the prediction
performance of AIR here. In the process of model training,
we set the different numbers of data history data with a
granularity of 50, and prediction results show that there is only
a slight improvement in accuracy after the history data exceeds
100 periods. Considering that a longer number of data history
poses more challenges for both storage and computation,
we set the history period length to 100 in the experiment.

We randomly chose several groups with different access
time ranges during 176 periodic intervals. We chose the predic-
tion results compared with the truth in Figure 15(a) to 15(h),
which indicate that the decoupled prediction algorithm works
well on various frequencies entries.

3) Threshold Analysis: An entry after being predicted will
be evaluated whether it is a hot entry based on a threshold
value TS, which will directly affect the TCAM hit rate and
the corresponding overhead. In this experiment, we evaluate
performances of AIR at various thresholds and compare the
results with another baseline solution, Least Recently Used
(LRU), as well as the traditional. In practice, a too-large TS
will make fewer entries cached and thus reduce the TCAM
hit rate, while a smaller TS will select too many entries that
exceed the TCAM space. Therefore, the TS value can be
determined based on the TCAM resources of routers, i.e., the
TS can be determined and adjusted by the range of access
frequency of the corresponding entry when the TCAM is being
filled.

• Hit Rate: We set the threshold TS to 1∼10 and conduct
a series of experiments to measure hit rate. In traditional,
when an entry that should be hit is not in TCAM, it will
be added to TCAM by randomly replacing another one.
In LRU, the least recently used one would be ejected,
while in AIR, we choose the one with least prediction
future frequency instead.
To ensure the validity of prediction results, we take
the average of 176 experiments as the final result. The
comparison results are presented in Figure 16(a). From
these results, it can bee observed that the average hit rate
of the above three mechanisms are similar to each other,
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Fig. 15. Prediction result of entries.

Fig. 16. Comparison of AIR, traditional strategy and LRU in hit rate (a) and replacement times (b), and group performance improvement (c).

even with different thresholds. For example, when TS is
set to 1, the hit rates are 93.6%, 93.5%, 94.0% for AIR,
traditional and LRU, respectively.

• Replacement times: Although a lower TS can improve
the hit rate, it also results in higher overhead on calcu-
lation consumption and entry replacement latency. The
operation of replacing an entry consists of two steps:
the first is to select an entry that needs to be removed
from the TCAM according to the replacement algorithm,
and the second is to free a suitable space for the newly
inserted entry by moving multiple entries stored in the
TCAM. The overhead of these two steps is kept consistent
in the experiments, so we count entry replacement times
under different TS (from 1 to 10, the same as in
Figure 16(a)) and show the results in Figure 16(b),
where the results are in logarithm operation. From these
results, it can be seen that the replacement times of both
traditional and LRU are around 104 times, while AIR’s
is around 102 times, which is 100 times less.

4) Parallelization: As described in § IV, we parallelize the
prediction process to further improve the prediction efficiency
and ensure the timeliness of the results. In this experimental,
all entries are divided into 10 to 50 DGs, respectively. The
number of predictions required each time is illustrated in the
Figure 16(c). As DGs increases, the number of prediction

entries per time decreases. When the number of DGs is 50,
only 171 entries need to be predicted, which is much smaller
than the 8,598 in nonparallel way. The optimal DG configu-
ration which is based on traffic characteristic and computing
power can enable statistics and predictions completely parallel.

5) Optimizations:

• The Filter: Eliminating dead entries from the pre-
diction list before execution can reduce the prediction
computation in each operation cycle. The criteria for
dead is different, i.e., the length of the historical period
should be reviewed, which will influence the specific
judgement. After pre-processing by filters, the number of
required prediction entries is shown in the histogram of
Figure 17(a). Note that the number of predictions without
the filter does not present in the figure, as it depends on
the number of entries of the RIB which is close to 106 in
a core router.
The effect of the filter on the hit rate at a threshold value
of 10 is shown in Figure 17(a). Due to the fluctuation
of the traffic, the more successive periods an entry is
accessed with a frequency of 0, i.e., the bigger the filter,
the higher of accuracy that an entry is identified as dead.
That is, the bigger the filter, the more computational
resources are required to make unnecessary predictions
for the dead entry; and the smaller the filter, the higher
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Fig. 17. Analysis of optimizations.

the risk of misclassification, which may affect the hit
rate of TCAM. According to the experimental results,
the hit rate maintains the consistency with no filter when
the history period length is longer than 6, while the
prediction calculations under this condition are less than
6,907. Optimization performance can be further improved
if treating access frequency below the threshold as 0.

• Filter&Parallelization: The filter and parallelization
optimize the prediction execution from the spatial and
temporal point of view, which can further reduce the
number of predictions per time. In this experiment, the
threshold of filter is set to minimum value of 1, which
means all entries with a frequency of 0 in the last
one period are classified to dead, and combined with
the parallelization strategy. In the case of different DG
configurations, the number of predictions per time is
shown in Figure 17(b).

• Storage: Although the entry set used for this experiment
is not the complete set of a RIB, the storage space
improvement can be theoretically calculated. The traffic
lasts about 5 minutes for a total of 1,300 periods (105 per
period), during which 8,598 entries were accessed. The
storage space can be released when the access frequencies
of an entry in the last x periods are all 0, we call
the x as the decay period. With different decay period
configurations, the number of active entries in 1,300
periods is shown in the Figure 17(c). Even when the
decay period is 100 which is already the maximum, the
number of active is less than the total entries’. It can
be concluded that the maximum of the active entries for
this traffic is 8,387. In order to facilitate the calculation,
we expanded the active number to 104, and still kept
the total number of entries at 106. The on-chip storage
space required according to the above rule is 4.13MB
(106×1bit+104×100×32bit), which is much less than
the original scheme’s 120MB.

In summary, AIR achieves the similar hit rate to the current
commercial schemes, but with only 1/8 TCAM capacity and
less replacement times in two orders of magnitude.

VII. EVALUATION FOR BIT

In this section, we clarify the experimental description and
analyze the performance of BIT with the off-the-shelf strategy,
and then present the comprehensive performance of A&B.

TABLE III

NOTATION DESCRIPTION OF BIT

A. Experiment Description

The RIB we used in the experiment is provided by
CAIDA [66], and the traffic data is kept consistent with
the described in § VI-A. To present the evaluation clearly,
we will explain the parameters and measurements we set in
the experiment of BIT. And Table III summarizes the common
notations.

• Protection Periods (PP): When an entry was
inserted into TCAM, to prevent it from being replaced
out by subsequent inserted entries, we set a protection
mechanism for the newly inserted entries and take the
number of packets as the unit. For example, when the
protection period is 100, a newly inserted entry will not
be swapped out until after at least 100 TCAM packet
lookups.

• Error Insertion Times (EIT): First, the
Insertion Times (IT) is the number of operations
to insert one entry, which is different from the number of
misses, because each time when a new entry is inserted,
its corresponding dependent entries need to be inserted
together. Usually, the insertion times are greater than
the miss times. Since the protection period mechanism,
there may be insert failures due to the non-existence
of entries that can be replaced out of TCAM, and the
number of failures is the error insertion times.

• Find Times (FT): To find the appropriate space
when inserting an entry or to find the dependent entries
that need to be deleted together when deleting one entry,
we uniformly categorize such tasks as find operations.
The uniform expression in terms of times can mask
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Fig. 18. The performance of BIT with TCAM size of 200 in hit rate (a), IT (b), EIT (c) and FT (d).

Fig. 19. The performance of BIT with TCAM size of 400 in hit rate (a), IT (b), EIT (c) and FT (d).

Fig. 20. The performance of BIT with TCAM size of 600 in hit rate (a), IT (b), EIT (c) and FT (d).

the specific lookup algorithm, e.g., hash or traversal.
Moreover, for the traversal algorithm, BIT is traversed in
each block instead of whole TCAM, and its complexity

can be reduced at least to
�n

i=0 size(blocki)∗times(blocki)

size(TCAM)∗times(all)

considering different find times and size of each block.
• Move Times (MT): To vacate an appropriate space

after Find for an inserted entry may trigger multiple
overwrite operations. We refer to each overwrite as a
move, so MT is the total number of moves to insert
entries. Note that, as we explain in § V, MT does not
exist in the fixed BIT, i.e., MTBIT ≡ 0.

In this group of experiments, we adopt the “insert if missed”
replacement strategy. The off-the-shelf strategy that we marked
traditional in the evaluation, takes whole TCAM as integration,
and BIT divides TCAM into several blocks. By setting differ-
ent TCAM total capacity and protection period, we obtain the
experimental results of the Traditional and BIT.

B. BIT Analysis

In this subsection, we will present the improvement of
BIT from four performance indicators: hit rate, insertion
times, error insertion times, and find times. We have plotted

Figure 18, Figure 19, and Figure 20 with different TCAM
capacities, 200, 400, and 600, respectively. The numbers in
the legend of each figure represent protection period values.
And the statistical period for each result is 10K packets.
Both BIT and traditional methods are based on the “insert if
missed” replacement strategy, which uses the LRU algorithm
to select the removed entries. The original size of each
block in BIT is set by the statistics of the entries accessed
distribution.

1) Hit Rate: A larger capacity means that TCAM can store
more entries, and correspondingly, the hit rate of lookup is
higher for the same caching algorithm. Therefore, in this
experiment, the hit rate shows an overall increase from the
capacity of 200 to 600, as shown in Figure 18(a), Figure 18(a)
and Figure 20(a).

For the same capacity and PP (two lines with the same
maker in different colors in one figure), although both are the
basis of the identical replacement strategy, the result shows
that BIT performs better than the traditional scheme. And
for the same capacity and different PP s of BIT (three solid
lines in one figure), the smaller the PP is, the higher its
corresponding hit rate is, which brings frequent replacement
operations.
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The reasons that BIT outperforms traditional ways on hit
rate is elaborated as follows. In the traditional schemes,
due to the entry dependency, when inserting an entry, all
dependent entries should be inserted jointly, which, however,
are rarely be accessed. Instead, BIT specifies the proportion
of TCAM resources for each block according to the real entry
access distribution. Due to the limitation of block size, these
dependent entries are not allowed to occupy other blocks,
which means that some of these dependent entries fail to be
inserted, thus ensuring that TCAM resources are fully utilized.
Finally, BIT improves the overall hit rate of TCAM.

2) Insertion Times: The results are presented in
Figure 18(b), Figure 18(b), and Figure 20(b). It can be
seen that the insertion times of BIT is much smaller than that
of the traditional method with the same capacity and PP .
Overall, this result is because BIT has a higher hit rate, then
fewer insertion operations are triggered. Since the insertion
operation corresponds to the write operation in the TCAM
update process, fewer write operations mean less write time
consumption and less computation consumption of entries
relationships. In particular, at a capacity of 600 (the y-axis
presents logarithm value of IT ), BIT over performs the
traditional more than 1,000 times. For BIT, the IT decreases
across orders of magnitude as the capacity increases.

3) Error Insertion Times: The results of EIT for differ-
ent TCAM capacities and PP are shown in Figure 18(c),
Figure 18(c), and Figure 20(c). Although this metric does not
directly reflect the performance, it is still necessary to analyze
the causes and effects of error insertion, especially on the hit
rate. First of all, the error insertion occurs because it is not
possible to vacate a suitable space for the entry to be inserted
even by moving under the mechanism of the protection period.
So in the case of PP = 1 for traditional, no error insertion
is generated because the number of dependent entries of one
inserted entry does not exceed the total capacity of TCAM in
the experiment. But for BIT, even if PP = 1, error insertion
will occur when the number of dependent entries with the same
prefix length of one inserted entry exceeds the corresponding
block size. In a vertical comparison, taking PP as the only
variable, as PP increases then a larger EIT is generated. If a
relatively high hit rate is maintained, which corresponds to
a more stable IT , it will, in turn, make the EIT stable at
a relatively small value, as shown in Figure 20(c).

In addition, since BIT prevents dependent entries with low
or even zero access frequency from being stored in TCAM
more strictly than the traditional case, i.e., BIT reserves
valuable resources for the entries with high access frequency.
Therefore, under the same TCAM resources and replacement
strategy, BIT has a higher hit rate than the traditional case.

4) Find Times: Both BIT and the traditional case are
required to find if there are suitable spaces or dependent entries
that need to be deleted jointly. Although they can be based
on the same find algorithm, the complexity of traversal-based
algorithms is usually related to the scale N . Therefore,
we count and analyze the find operations triggered when
updating TCAM. For all three TCAM sizes from small to large
in the experiment, as described in Figure 18(d), Figure 18(d),
and Figure 20(d), BIT over-performs than traditional on FT ,

Fig. 21. Move times.

Fig. 22. Comparison dynamic and fixed block.

which is attributed to the fact that BIT corresponds to less
IT s, and, in turn, decreases the value of FT . Ultimately, the
combination of multiple factors comprehensively improves the
performance of BIT.

C. Move Times

The entries movement is an important impact factor of
TCAM update performance in existing deployed algorithms,
and theoretically, its impact is positively correlated with the
entry insertion times scale. For BIT, when and only when
borrowing process in dynamic mode will generate very few
moves, and the MT is only related to the stable block scale,
not to the increasing insertion times scale.

Since move times of the traditional are affected by PP
and TCAM capacity, the MT results of the traditional update
process are analyzed from these two aspects. In the PP =
1 case, when there is a relatively large TCAM capacity, there
are enough entries that can be replaced when inserting a
new entry, so few moves will be generated, as shown in
Figure 21(a). The increment of PP restricts the replacement
of the entries stored in TCAM, so when PP = 100, as shown
in Figure 21(b), MT shows an increasing trend than PP = 1,
especially when the TCAM size is relatively small. However,
when PP = 104, MT shows a decrease instead, as shown
in Figure 21(c). This is because the protection mechanism
triggers a large number of insertion errors, which means lots
of entry insertion tasks are suspended, i.e., no move operation
is triggered.

D. Dynamic Block

To integrate AIR and BIT, a period-based replacement
strategy is used in this set of experiments, i.e., counting
information for a given length packets interval and then
updating TCAM, which is consistent with AIR. Setting the
statistic period window step to 10K packets, the hit rates are
plotted for different TCAM sizes, 200 (Figure 22(a)), 400
(Figure 22(b)), and 600 (Figure 22(c)), respectively.
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Fig. 23. Performance of A&B.

The results reveal that the hit rate still follows the rule that
it increases with the growing TCAM size. And no matter for
which TCAM size, the dynamic scheme over-performs than
the fixed. When size = 200, the overall hit rate is low due
to the small size of the whole TCAM, which leads to a small
gap between dynamic and fixed. Similarly, at size = 600,
the TCAM size is relative large enough, the dynamic and the
fixed keep a high hit rate, also, with a small gap. However,
at size = 400, the in-between size has more maneuverability,
which makes the performance improvement of dynamic more
obvious.

E. AIR+BIT

A&B is integrated by updating the prediction result of
AIR to TCAM on the basis of the constraint of BIT. The
performance improvements of A&B in terms of hit rate,
insertion times, and find times are depicted in the figure by
comparing to the BIT-only policy, whose protection period is
104 that keeps consistent with the statistical period of A&B.
The TCAM size of this experiment is 600. The hit rate can
be further improved by the hot entry prediction of AIR, with
an average value of 98.58% for more than 600 periods, versus
74.97% for BIT-only, as shown in Figure 23(a). Due to the
threshold TS set in AIR, only hot entries were selected to
insert into TCAM, combined with the stability of the traffic,
only a very little amount of entries were inserted each period,
as shown in Figure 23(b). The average IT per 104 packets
is 18, far better than 1,730 of BIT-only. Moreover, A&B
without error insertion times, i.e., EIT ≡ 0 due to the
selection mechanism of AIR, which constraints the number of
inserted entries does not exceed the size of the corresponding
block. Due to the performance improvement brought by the
insertion times, it also greatly reduces the number of times to
find the suitable space during updating TCAM, as shown in
Figure 23(c). The average FT of A&B is 17, while BIT-only
reaches 1,693.

VIII. DISCUSSION AND CONCLUSION

With the rapid development of technologies such as 5G/6G
and IoT, more and more terminals are accessing the Internet
and generating enormous traffic, which imposes huge pres-
sures on forwarding devices, so routers have to continuously
expand the capacity of TCAM to cope with the explosive
growth of the number of routing entries. In order to solve
the problems caused by large capacity TCAM, we have
designed an AI and block-based TCAM entry replacement
scheme termed A&B. AIR decouples the aggregates flows to

address the accuracy challenge of prediction, and on this basis,
parallelizes LSTM algorithm, which can satisfy the efficiency
demand for prediction results. BIT conducts a block-based
TCAM routing entry insertion tactic based on prefix length,
which can eliminate the entries moves issue when inserting
new entries, and compress the scale of dependent entries
according to probability and stable traffic skew distribution,
which greatly improves the efficiency of TCAM updates.
Moreover, given that AIR and BIT are not tightly coupled,
they also can provide optimization for TCAM independently.
The prediction mechanism of AIR is applicable in any capacity
TCAM scenario to improve the hit rate. BIT provides a
strategy for TCAM item insertion from a new perspective
that can be combined with the already intensively studied
table entry compression optimization algorithms. As the two
steps of TCAM optimization, the combination of AIR and
BIT, i.e., A&B, enhances the TCAM performance. Through a
series of experiments, A&B has been shown to achieve similar
performance to existing strategies while using only 1/8 TCAM
capacity and eliminate the complicated entries movements
during the updating process of TCAM. The improvement in
capacity will be more clear in large-scale networks.

ACKNOWLEDGMENT

The authors would like to thank Ian Lewis, University of
Cambridge, for his valuable suggestions on expression and
structure of this article. This work significantly extends [67]
by adding block-based entry insertion tactic for optimizing
updating process of TCAM.

REFERENCES

[1] (2020). BGP Routing Table Analysis Reports. [Online]. Available:
https://bgp.potaroo.net/

[2] (2020). Cisco. [Online]. Available: https://www.cisco.com/
[3] D. E. Taylor, “Survey and taxonomy of packet classification techniques,”

ACM Comput. Surv., vol. 37, no. 3, pp. 238–275, 2005.
[4] B. Vamanan, G. Voskuilen, and T. Vijaykumar, “Efficuts: Optimizing

packet classification for memory and throughput,” ACM SIGCOMM
Comput. Commun. Rev., vol. 41, no. 4, pp. 207–218, Oct. 2011.

[5] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, “Algorithms
for advanced packet classification with ternary CAMs,” ACM SIGCOMM
Comput. Commun. Rev., vol. 35, no. 4, pp. 193–204, Oct. 2005.

[6] P. He, W. Zhang, H. Guan, K. Salamatian, and G. Xie, “Partial order
theory for fast TCAM updates,” IEEE/ACM Trans. Netw., vol. 26, no. 1,
pp. 217–230, Feb. 2018.

[7] S. Hu et al., “Aeolus: A building block for proactive transport in
datacenters,” in Proc. Annu. Conf. ACM Special Interest Group Data
Commun. Appl., Technol., Architectures, Protocols Comput. Commun.,
Jul. 2020, pp. 422–434.

[8] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang,
“Making content caching policies ‘smart’ using the deepcache frame-
work,” ACM SIGCOMM Comput. Commun. Rev., vol. 48, no. 5,
pp. 64–69, Jan. 2019.

[9] R. Li, B. Zhao, R. Chen, and J. Zhao, “Taming the wildcards: Towards
dependency-free rule caching with FreeCache,” in Proc. IEEE/ACM 28th
Int. Symp. Qual. Service (IWQoS), Jun. 2020, pp. 1–10.

[10] X. Wen et al., “RuleTris: Minimizing rule update latency for TCAM-
based SDN switches,” in Proc. IEEE 36th Int. Conf. Distrib. Comput.
Syst. (ICDCS), Jun. 2016, pp. 179–188.

[11] (2019). The Caida UCSD Anonymized Internet Traces. [Online]. Avail-
able: https://www.caida.org/data/passive/passive_dataset.xml

[12] H. Asai and Y. Ohara, “Poptrie: A compressed trie with population
count for fast and scalable software ip routing table lookup,” SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 57–70, Aug. 2015.

[13] T. Yang et al., “Guarantee IP lookup performance with FIB explosion,”
in Proc. ACM Conf. SIGCOMM, Aug. 2014, pp. 39–50.

Authorized licensed use limited to: Tsinghua University. Downloaded on August 22,2022 at 07:45:14 UTC from IEEE Xplore.  Restrictions apply. 



2660 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 9, SEPTEMBER 2022

[14] A. Sivaraman et al., “Packet transactions: High-level programming
for line-rate switches,” in Proc. ACM SIGCOMM Conf., Aug. 2016,
pp. 15–28.

[15] M. Zec, L. Rizzo, and M. Mikuc, “DXR: Towards a billion routing
lookups per second in software,” ACM SIGCOMM Comput. Commun.
Rev., vol. 42, no. 5, pp. 29–36, Sep. 2012.

[16] S. Nilsson and G. Karlsson, “IP-address lookup using LC-tries,” IEEE
J. Sel. Areas Commun., vol. 17, no. 6, pp. 1083–1092, Jun. 1999.

[17] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, Small Forwarding
Tables for Fast Routing Lookups, vol. 27, no. 4. New York, NY, USA:
ACM, 1997.

[18] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high
speed IP routing lookups,” in Proc. ACM SIGCOMM Conf. Appl.,
Technol., Architectures, Protocols Comput. Commun., 1997, pp. 25–36.

[19] A. Broder and M. Mitzenmacher, “Using multiple hash functions to
improve IP lookups,” in Proc. Conf. Comput. Commun., 20th Annu.
Joint Conf. IEEE Comput. Commun. Soc., 2001, pp. 1454–1463.

[20] F. Pong and N.-F. Tzeng, “Concise lookup tables for IPv4 and IPv6
longest prefix matching in scalable routers,” IEEE/ACM Trans. Netw.,
vol. 20, no. 3, pp. 729–741, Jun. 2011.

[21] T. Stimpfling, N. Bélanger, J. M. P. Langlois, and Y. Savaria, “SHIP:
A scalable high-performance IPv6 lookup algorithm that exploits prefix
characteristics,” IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1529–1542,
Aug. 2019.

[22] L. Liu, J. Hu, Y. Yan, S. Gao, T. Yang, and X. Li, “Longest prefix
matching with pruning,” in Proc. IEEE 20th Int. Conf. High Perform.
Switching Routing (HPSR), May 2019, pp. 1–6.

[23] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix
matching using Bloom filters,” in Proc. Conf. Appl., Technol., Architec-
tures, Protocols Comput. Commun., 2003, pp. 201–212.

[24] J. Hasan, S. Cadambi, V. Jakkula, and S. Chakradhar, “Chisel: A storage-
efficient, collision-free hash-based network processing architecture,” in
Proc. 33rd Int. Symp. Comput. Archit. (ISCA), 2006, pp. 203–215.

[25] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix
matching using bloom filters,” IEEE/ACM Trans. Netw., vol. 14, no. 2,
pp. 397–409, Apr. 2006.

[26] H. Yu, R. Mahapatra, and L. Bhuyan, “A hash-based scalable IP lookup
using Bloom and fingerprint filters,” in Proc. 17th IEEE Int. Conf. Netw.
Protocols, Oct. 2009, pp. 264–273.

[27] H. Song, F. Hao, M. Kodialam, and T. V. Lakshman, “IPv6 lookups
using distributed and load balanced Bloom filters for 100Gbps core
router line cards,” in Proc. 28th Conf. Comput. Commun., Apr. 2009,
pp. 2518–2526.

[28] H. Lim, K. Lim, N. Lee, and K.-H. Parl, “On adding bloom filters
to longest prefix matching algorithms,” IEEE Trans. Comput., vol. 63,
no. 2, pp. 411–423, Feb. 2012.

[29] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-
accelerated software router,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 4, pp. 195–206, 2010.

[30] J. Zhao, X. Zhang, X. Wang, and X. Xue, “Achieving O(1) IP lookup
on GPU-based software routers,” in Proc. ACM SIGCOMM Conf., 2010,
pp. 429–430.

[31] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang, and K. Park, “APUNet:
Revitalizing GPU as packet processing accelerator,” in Proc. 14th
USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2017, pp. 83–96.

[32] H. Byun, Q. Li, and H. Lim, “Vectored-Bloom filter implemented
on FPGA for IP address lookup,” in Proc. Int. Conf. Electron., Inf.,
Commun. (ICEIC), Jan. 2019, pp. 1–4.

[33] K. Huang, G. Xie, Y. Li, and A. X. Liu, “Offset addressing approach
to memory-efficient IP address lookup,” in Proc. IEEE INFOCOM,
Apr. 2011, pp. 306–310.

[34] Y.-H.-E. Yang, Y. Qu, S. Haria, and V. K. Prasanna, “Architecture
and performance models for scalable IP lookup engines on FPGA,” in
Proc. IEEE 14th Int. Conf. High Perform. Switching Routing (HPSR),
Jul. 2013, pp. 156–163.

[35] M. Meribout and M. Motomura, “A new hardware algorithm for fast
IP routing targeting programmable routers,” in Proc. Int. Conf. Netw.
Control Eng. QoS, Secur. Mobility. Cham, Switzerland: Springer, 2003,
pp. 164–179.

[36] H. Fadishei, M. S. Zamani, and M. Sabaei, “A novel reconfigurable
hardware architecture for IP address lookup,” in Proc. Symp. Archit.
Netw. Commun. Syst., 2005, pp. 81–90.

[37] R. Sangireddy, N. Futamura, S. Aluru, and A. K. Somani, “Scalable,
memory efficient, high-speed IP lookup algorithms,” IEEE/ACM Trans.
Netw., vol. 13, no. 4, pp. 802–812, Aug. 2005.

[38] H. Song, M. Kodialam, F. Hao, and T. V. Lakshman, “Scalable IP
lookups using shape graphs,” in Proc. 17th IEEE Int. Conf. Netw.
Protocols, Oct. 2009, pp. 73–82.

[39] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh, “A tree based router
search engine architecture with single port memories,” in Proc. 32nd Int.
Symp. Comput. Archit. (ISCA), 2005, pp. 123–133.

[40] H. Le, W. Jiang, and V. K. Prasanna, “A SRAM-based architecture
for trie-based IP lookup using FPGA,” in Proc. 16th Int. Symp. Field-
Programmable Custom Comput. Mach., Apr. 2008, pp. 33–42.

[41] D. Pao, Z. Lu, and Y. H. Poon, “IP address lookup using bit-shuffled
trie,” Comput. Commun., vol. 47, pp. 51–64, Jul. 2014.

[42] V. C. Ravikumar, R. N. Mahapatra, and L. N. Bhuyan, “EaseCAM:
An energy and storage efficient TCAM-based router architecture for IP
lookup,” IEEE Trans. Comput., vol. 54, no. 5, pp. 521–533, May 2005.

[43] K. Kogan, S. I. Nikolenko, O. Rottenstreich, W. Culhane, and P. Eugster,
“Exploiting order independence for scalable and expressive packet
classification,” IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 1251–1264,
Apr. 2015.

[44] C. Zhang et al., “OBMA: Minimizing bitmap data structure with fast and
uninterrupted update processing,” in Proc. IEEE/ACM 26th Int. Symp.
Quality Service (IWQoS), Jun. 2018, pp. 1–6.

[45] V. Demianiuk, S. Nikolenko, P. Chuprikov, and K. Kogan, “New
alternatives to optimize policy classifiers,” IEEE/ACM Trans. Netw.,
vol. 28, no. 3, pp. 1088–1101, Jun. 2020.

[46] A. X. Liu, C. R. Meiners, and E. Torng, “TCAM Razor: A systematic
approach towards minimizing packet classifiers in TCAMs,” IEEE/ACM
Trans. Netw., vol. 18, no. 2, pp. 490–500, Apr. 2009.

[47] C. R. Meiners, A. X. Liu, and E. Torng, “Topological transformation
approaches to TCAM-based packet classification,” IEEE/ACM Trans.
Netw., vol. 19, no. 1, pp. 237–250, Feb. 2010.

[48] C. R. Meiners, A. X. Liu, and E. Torng, “Bit weaving: A non-prefix
approach to compressing packet classifiers in TCAMs,” IEEE/ACM
Trans. Netw., vol. 20, no. 2, pp. 488–500, Apr. 2012.

[49] J.-P. Sheu, W.-T. Lin, and G.-Y. Chang, “Efficient TCAM rules distri-
bution algorithms in software-defined networking,” IEEE Trans. Netw.
Service Manage., vol. 15, no. 2, pp. 854–865, Jun. 2018.

[50] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Rule-caching
algorithms for software-defined networks,” Tech. Rep., 2014. Accessed:
Aug. 1, 2021. [Online]. Available: http://www.cs.princeton.edu/~nkatta/
papers/cacheflow-long14.pdf

[51] J. P. Sheu and Y. C. Chuo, “Wildcard rules caching and cache replace-
ment algorithms in software-defined networking,” IEEE Trans. Netw.
Service Manage., vol. 13, no. 1, pp. 19–29, Mar. 2016.

[52] Y. Wan et al., “T-cache: Dependency-free ternary rule cache for policy-
based forwarding,” in Proc. IEEE Conf. Comput. Commun., Jul. 2020,
pp. 536–545.

[53] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “CacheFlow:
Dependency-aware rule-caching for software-defined networks,” in Proc.
Symp. SDN Res., Mar. 2016, pp. 1–12.

[54] B. Zhao, R. Li, J. Zhao, and T. Wolf, “Efficient and consistent
TCAM updates,” in Proc. IEEE Conf. Comput. Commun., Jul. 2020,
pp. 1241–1250.

[55] Y. Wan, H. Song, Y. Xu, C. Zhang, Y. Wang, and B. Liu, “Adap-
tive batch update in TCAM: How collective optimization beats indi-
vidual ones,” in Proc. IEEE Conf. Comput. Commun., May 2021,
pp. 1–10.

[56] Z. Ding, X. Fan, J. Yu, and J. Bi, “Update cost-aware cache replacement
for wildcard rules in software-defined networking,” in Proc. IEEE Symp.
Comput. Commun. (ISCC), Jun. 2018, pp. 457–463.

[57] K. Qiu, J. Yuan, J. Zhao, X. Wang, S. Secci, and X. Fu, “Fast
lookup is not enough: Towards efficient and scalable flow entry updates
for TCAM-based OpenFlow switches,” in Proc. IEEE 38th Int. Conf.
Distrib. Comput. Syst. (ICDCS), Jul. 2018, pp. 918–928.

[58] D. Shah and P. Gupta, “Fast updating algorithms for TCAM,” IEEE
Micro, vol. 21, no. 1, pp. 36–47, Jan. 2001.

[59] S. Higuchi, J. Takemasa, Y. Koizumi, A. Tagami, and T. Hasegawa,
“Feasibility of longest prefix matching using learned index structures,”
ACM SIGMETRICS Perform. Eval. Rev., vol. 48, no. 4, pp. 45–48,
May 2021.

[60] E. Liang, H. Zhu, X. Jin, and I. Stoica, “Neural packet classification,”
in Proc. ACM Special Interest Group Data Commun., Aug. 2019,
pp. 256–269.

[61] A. Rashelbach, O. Rottenstreich, and M. Silberstein, “A computational
approach to packet classification,” in Proc. Annu. Conf. ACM Special
Interest Group Data Commun. Appl., Technol., Architectures, Protocols
Comput. Commun., Jul. 2020, pp. 542–556.

Authorized licensed use limited to: Tsinghua University. Downloaded on August 22,2022 at 07:45:14 UTC from IEEE Xplore.  Restrictions apply. 



CONG et al.: A&B: AI AND BLOCK-BASED TCAM ENTRIES REPLACEMENT SCHEME FOR ROUTERS 2661

[62] Q. He, A. Moayyedi, G. Dan, G. P. Koudouridis, and P. Tengkvist,
“A meta-learning scheme for adaptive short-term network traffic pre-
diction,” IEEE J. Sel. Areas Commun., vol. 38, no. 10, pp. 2271–2283,
Oct. 2020.

[63] Y. Zhang et al., “AutoSight: Distributed edge caching in short video
network,” IEEE Netw., vol. 34, no. 3, pp. 194–199, May 2020.

[64] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang,
“Leveraging Zipf’s law for traffic offloading,” ACM SIGCOMM Comput.
Commun. Rev., vol. 42, no. 1, pp. 16–22, Jan. 2012.

[65] (2021). University of Oregon Route Views Project. [Online]. Available:
http://www.routeviews.org/routeviews/

[66] (2021). Routeviews Prefix to as Mappings Dataset for IPV4 and IPV6.
[Online]. Available: https://www.caida.org/catalog/datasets/routeviews-
prefix2as/

[67] Y. Zhang, P. Cong, B. Liu, W. Wang, and K. Xu, “AIR: An AI-based
TCAM entry replacement scheme for routers,” in Proc. IEEE/ACM 29th
Int. Symp. Qual. Service (IWQOS), Jun. 2021, pp. 1–10.

Peizhuang Cong is currently pursuing the Ph.D.
degree with the State Key Laboratory of Net-
work and Switching Technology, Beijing University
of Posts and Telecommunications, Beijing, China.
His current research interests include next genera-
tion network architecture, data-driven networks, and
mobile internet.

Yuchao Zhang (Member, IEEE) received the B.S.
degree in computer science and technology from
Jilin University in 2012 and the Ph.D. degree from
the Department of Computer Science, Tsinghua Uni-
versity, in 2017. She is currently an Associate
Professor with the Beijing University of Posts and
Telecommunications, Beijing, China, and a Visiting
Scholar with the University of Cambridge, where she
is also a Research Associate at the Wolfson College.
Her research interests include large scale datacenter
networks, federated learning, data-driven networks,

and edge computing. She is a member of ACM.

Bin Liu (Senior Member, IEEE) received the M.E.
and Ph.D. degrees in computer science and engi-
neering from Northwestern Polytechnical University,
Xi’an, China, in 1988 and 1993, respectively. He is
currently a Full Professor with the Department of
Computer Science and Technology, Tsinghua Uni-
versity, Beijing, China. His current research interests
include high-performance switches/routers, network
processors, high-speed security, and greening the
internet. He has received numerous awards from
China, including the Distinguished Young Scholar

of China and won the inaugural Applied Network Research Prize sponsored
by ISOC and IRTF in 2011.

Wendong Wang (Member, IEEE) received the B.E.
and M.E. degrees from the Beijing University of
Posts and Telecommunications, China, in 1985 and
1991, respectively. He is currently a Full Profes-
sor with the State Key Laboratory of Networking
and Switching Technology. He has published over
200 papers in various journals and conference pro-
ceedings. His current research interests include next
generation network architecture, network resources
management and QoS, and mobile internet.

Zehui Xiong (Member, IEEE) received the Ph.D.
degree from Nanyang Technological University,
Singapore. He was a Visiting Scholar at Princeton
University and the University of Waterloo. He is cur-
rently an Assistant Professor with the Pillar of Infor-
mation Systems Technology and Design, Singapore
University of Technology and Design. Prior to that,
he was a Researcher with the Alibaba-NTU Joint
Research Institute, Singapore. He has published
more than 100 research papers in leading journals
and flagship conferences and four of them are ESI

Highly Cited Papers. His research interests include wireless communications,
network games and economics, blockchain, and edge intelligence. He has won
five Best Paper Awards in international conferences and technical committee.
He was a recipient of the Chinese Government Award for Outstanding
Students Abroad in 2019 and the NTU SCSE Best Ph.D. Thesis Runner-Up
Award in 2020. He is serving as an editor or a guest editor for many leading
journals, including IEEE TRANSACTIONS. He is the Founding Vice Chair of
Special Interest Group on Wireless Blockchain Networks in IEEE Cognitive
Networks Technical Committee.

Ke Xu (Senior Member, IEEE) received the Ph.D.
degree from the Department of Computer Science
and Technology, Tsinghua University. He is cur-
rently a Full Professor at Tsinghua University. His
research interests include next generation internet,
P2P systems, the Internet of Things, network virtu-
alization, and network economics. He is a member
of ACM. He serves as an Associate Editor for IEEE
INTERNET OF THINGS JOURNAL. He has guest
edited several special issues in IEEE and Springer
journals.

Authorized licensed use limited to: Tsinghua University. Downloaded on August 22,2022 at 07:45:14 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


