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Abstract—Heuristic-based workload redistribution is the most
commonly adopted solution to provide enhanced service perfor-
mance in large-scale Internet Data Centers (IDCs). However,
statistics show that they cannot perform as well as expected
in real-world IDCs. In this paper, we rethink existing solutions
based on real-world trace data and pinpoint two major pitfalls:
(i) Sensitive to hand-tuning parameters; (ii) Reassigning only a
few workloads locally at a time. The two of them jointly limit
the universal applicability of existing solutions in optimizing
multiple objectives fairly. To address such issues, we propose
the matching-theory-based solution for workload redistribution,
namely Themis. It is an efficient and universal solution for
large-scale IDCs, which can avoid empirical parameters in
optimization and reassign several workloads globally each time.
Moreover, the newly proposed Themis can optimize multiple
objectives (e.g., resource utilization balancing and communication
efficiency improving) simultaneously and fairly. In addition to
its own performance advantages, our proposed Themis is also
compatible with existing methods, thus adapting to a wider range
of deployment scenarios. Extensive evaluations based on the trace
data from two real-world IDCs demonstrate that our proposed
Themis outperforms multiple comparison solutions, as well as the
compatibility of parameter changes (i.e., stability properties in
terms of parameter configuration).

Index Terms—Workload Redistribution, Matching Theory,
Resource Utilization, Communication Efficiency.

I. INTRODUCTION

Workload redistribution [1], [2] has been widely adopted in
large-scale Internet Data Centers (IDCs) for load balancing,
power saving, etc. The principle of workload redistribution
is to migrate workloads (e.g., processes, containers, virtual
machines (VMs), microservices, etc.) among the physical
hosts, seeking better performance (e.g., resource utilization and
communication efficiency) and lower running costs. Existing
solutions to workload redistribution fall into two categories,
i.e., exact methods and heuristic methods. Since workload
redistribution is NP-hard [3], due to high computational com-
plexity, exact methods have limited real-world applicability.
Therefore, most large-scale IDCs in the real world adopt
heuristic solutions to pursue balanced efficiency and perfor-
mance [4]–[6].

Although great efforts have been devoted to the workload
redistribution, the status quo of IDCs in the real world is

still unsatisfactory. For example, load balancing is the main
objective of many workload redistribution solutions, but the
statistics from top industries demonstrate that resource utiliza-
tion is still severely imbalanced in real-world IDCs [7], [8].

In this paper, we rethink and improve workload redistribu-
tion in large-scale IDCs. More specifically, we perform com-
prehensive case studies based on real-world IDCs to analyze
the performance of representative workload redistribution solu-
tions, i.e., Local Search (LS) and Large Neighborhood Search
(LNS). And then, we have several findings. First, LS iteratively
migrates a small number of workloads globally, causing fast
convergence but unstable performance. On the contrary, LNS
repeatedly redistributes several workloads locally with relative
high computational complexity, yielding stable performance
but slow convergence. In addition, whether it is LS or LNS,
or other existing methods, they are sensitive to empirical
parameters, restricting them to optimize multiple objectives
in real-world scenarios.

To address above issues, in addition to avoiding hand-tuning
parameters in optimization, we should reassign several work-
loads globally and efficiently each time. Particularly, reassign-
ing workloads is essentially rebuilding the matching between
workloads and hosts, which inspires us to apply matching
theory [9] to solve the problem. Therefore, we propose Themis,
a matching-theory-based approach to workload redistribution.
Moreover, Themis is implemented and extensively evaluated
based on real-world IDCs. Evaluation results demonstrate the
effectiveness of Themis. In other word, the proposed Themis
provides a promising way to improve the performance of
workload redistribution in large-scale IDCs in the real world.

Our contribution: The key contributions we have made in
this paper are summarized as follows.

• Via rethinking existing solutions and case studies, we
further clarify the issues of resource utilization, commu-
nication efficiency, and sensitivity to real-world scenarios.

• Based on the matching theory, we innovatively propose an
efficient and universal solution i.e., Themis, for workload
redistribution with large-scale IDCs.

• In addition to the multi-objective advantages in resource
utilization and communication efficiency, Themis can also
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be utilized as a component of existing methods to adapt
to a wider range of deployment scenarios.

• It has been demonstrate that Themis can not only op-
timize multiple objectives more egalitarian, but also be
compatible with parameter changes.

II. BACKGROUND

To succinctly articulate our motivations and the inadequa-
cies of existing work, in this section, we first summarize the
existing workload redistribution solutions. As illustrated in
Table I, these solutions fall into two categories: exact methods
and heuristic methods.

TABLE I
CATEGORIES OF EXISTING SOLUTIONS

Category Researches

Exact methods [10], [11]

Heuristic
methods

LS-based heuristics
[12], [13], [14], [15],
[6], [16], [17], [18],
[19], [20]

LNS-based heuristics [21], [22], [23]

Hybrid-based heuristics [24], [5], [25], [26]
[27], [28]

Exact methods usually formulate the workload redistribution
problem into a constraint optimization form and apply opti-
mization techniques to solve it. However, exact methods are
inefficient in real-world scenarios because of high computation
complexity [6].

Regarding heuristic methods, they can be further divided
into three types, i.e., LS-based heuristics, LNS-based heuristics,
and Hybrid-based heuristics1.

LS optimizes workload distribution iteratively. In each iter-
ation, LS randomly selects some workloads (typically one or
two workloads) and reassigns them globally with three actions,
i.e., Move, Swap and Replace. The action Move(ci, ha, hb)
shifts workload ci from host ha to host hb. The action
Swap(ci, cj) exchanges the locations of two workloads ci and
cj . The action Replace(ci, ha, cj , hb, hc) moves workload cj
from hb to hc, and then moves workload ci from ha to hb.

Similar to LS, LNS also works in an iterative manner. In
each iteration, LNS selects several hosts (typically less than
ten hosts) as a sub-problem, and utilizes systematic search
or optimization techniques to solve the sub-problem, i.e.,
optimizes the workload distribution on the selected hosts.

Hybrid is usually composed of multiple components, and
each component runs a LS algorithm or a LNS algorithm.
These components work in series or in parallel to better
optimize the objective.

III. DEFINITION OF CONTAINER REDISTRIBUTION

This paper considers workload redistribution in a container-
based IDC. The containerized IDC is expressed in the triad of
hosts, applications, and containers, denoted by (H,A, C). H

1For simplicity of description, the simplified LS, LNS, and Hybrid refer to
the corresponding heuristic method.

denotes the set of hosts and A denotes the set of applications.
Each application a ∈ A is initialized as a group of containers
Ca, and each container accommodates a component of the
applications. Containers of the same application communicate
with each other for data transmission and synchronization to
provide service. The containers of all applications constitute
the full set C. For parallel processing and robustness purpose,
an application a ∈ A may have several replicas in the IDC,
thus each container c ∈ Ca has the same number of replicas
accordingly. The types of resources we consider in the problem
are denoted as R. For a given host h ∈ H, hr refers to its
capacity of resource r ∈ R. For a given container c ∈ C,
cr refers to its requirement on resource r ∈ R. Besides, we
utilize hc to denote the host where container c is located.

A. Objectives

In the containerized IDC, container distribution affects the
applications’ performance from two aspects, i.e., resource
utilization and communication efficiency. On the one hand,
components of the same application are usually intensive to the
same type of resource, and placing them on the same host can
easily cause imbalanced resource utilization, which further
harms the availability and throughput of the corresponding
application [6]. On the other hand, when two containers
are placed on different physical hosts, the communication
efficiency between them is much lower than when they are
placed on the same host [29]. In other words, distributing
the containers on a large number of hosts would increase the
application’s response time and degrade the performance. As
a result, both factors are important for real-world systems, and
we apply container redistribution to optimize both factors.

1) Resource Utilization Balancing: There are two aspects
of load balancing in the IDC [10]. From the global perspective,
for a given type of resource r ∈ R, the utilization of r should
be as balanced as possible across different hosts, because an
overutilized host can easily become the bottleneck, thereby
reducing the overall performance of the applications. From
the local perspective, for a given host h ∈ H, the utilization
of different types of resources should be as equal as possible
to satisfy future resource demand, because a host with much
free CPU but little free memory can hardly fulfill the resource
demand of new containers, which harms the service capacity
of the corresponding IDC. Thus, the ideal situation is that all
hosts enjoy equal utilization for resource r ∈ R, which ensures
the global load balancing as well as local load balancing.

We define Mr to measure the degree of utilization imbal-
ance of resource r ∈ R in the IDC:

Mr =
∑
h∈H

(Ur
h − Ūr)

2, (1)

where Uh
r is the utilization of r on host h. Ūr is the optimal

utilization for r, expressed as

Ūr =

∑
c∈C cr∑
h∈H hr

. (2)
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We apply the sum of Mr to measure the degree of overall
resource utilization imbalance in the IDC, and define the
Resource Utilization Balancing cost as

OBJU =
∑
r∈R

Mr. (3)

The minimization of OBJU brings the optimization of
both global and local load balancing by evenly spreading the
resource demand across the hosts.

2) Overall Communication Efficiency: We define an intra-
host communication pairs as two containers that are from the
same application and located on the same host. The number
of intra-host communication pairs reflects the communication
efficiency of the applications. More intra-host communica-
tion pairs indicate more communications between containers
happen within physical hosts, and it guarantees the overall
communication efficiency.

We apply the number of intra-host communication pairs in
the IDC to measure the Overall Communication Efficiency:

OBJE =
∑
a∈A

∑
ci,cj∈Ca

I(ci, cj), (4)

where I(ci, cj) indicates whether containers ci and cj are
located on the same host:

I(ci, cj) =

{
1,
0,

if hci = hcj

otherwise . (5)

The maximization of OBJE improves the communication
efficiency in the IDC.

B. Constraints

1) Capacity Constraint: For each host h ∈ H, the amount
of resource r ∈ R utilized by the containers cannot exceed its
capacity hr, i.e.,∑

c∈C,hc=h

cr ≤ hr,∀h ∈ H,∀r ∈ R, (6)

where hc denotes the host that container c is located on.
2) Conflict Constraint: A container cannot be placed on

the same host with its replicas to ensure the robustness of the
application. Thus, the Conflict Constraint is expressed as∑

h∈H

J(h, c) = ∥dc∥ ,∀c ∈ C, (7)

where dc is the set of c’s replicas (including c itself) and ∥dc∥
denotes the number of c’s replicas. J(h, c) indicates whether
one of c’s replicas is located on host h:

J(h, c) =

{
1,
0,

if hc′ = h
otherwise

,∀c′ ∈ dc. (8)

3) Transient Constraint: To ensure the continuity of the
applications, a migrated container should not be destroyed
on the source host until a new instance is created on the
destination host. As a result, a migrated container utilizes
the resource of both source host and destination host in
redistribution. We utilize hc and h′c to respectively denote

source host and destination host of a migrated container c.
The Transient Constraint can be expressed as∑

hc=h orh′c=h

cr ≤ hr, c ∈ C,∀r ∈ R,∀h ∈ H. (9)

4) Migration Constraint: An application may suffer from
performance degradation when migrating its containers. In
practice, the number of migrated containers should not exceed
a pre-configured threshold, which is expressed as∑

c∈C
K(c) ≤ λ · ∥C∥ , (10)

where λ denotes the maximum ratio of containers that are
allowed to be migrated, and ∥C∥ denotes the total number of
containers in the IDC. K(c) indicates whether the location of
container c is changed after redistribution. More specifically,
hc
b and hc

a respectively represents the location of container
c before and after redistribution. If hc

b ̸= hc
a, K(c) = 1.

Otherwise, K(c) = 0.

C. Problem Definition

In the IDC, we optimize the resource utilization and overall
communication efficiency with container redistribution. The
container redistribution problem is formulated as:

minimize
hc

OBJU,

maximize
hc

OBJE,
(11)

The above problem (i.e., Eq. (11) with the aforementioned
constraints) is a non-linear mix-integer programming problem,
which is NP-hard. It explains why large-scale IDCs utilize
heuristics for workload redistribution.

IV. CASE STUDY

Via the case study, we further clarify the limitation of
existing workload redistribution solutions. Among the so-
lutions summarized in Table I, we pay more attention to
LS and LNS, because they are the most commonly adopted
approaches in real-world IDCs. Moreover, both of them are
the basic components, and their improvements can enhance
the performance of Hybrid-based heuristics.

We apply LS and LNS to two real-world IDCs of Baidu
(denoted as IDC1 and IDC2, respectively), where LS and LNS
are respectively implemented based on [6] and [23]. Both
methods optimize multi-objectives by optimizing the weighted
sum of the objectives:

minimize OBJ = ωu · OBJU − ωe · OBJE. (12)

We set the weights to proper values to make sure that ωu ·
OBJU and −ωe · OBJE fall into similar numeric range, which
is a common practice to fairly optimize multiple objectives.

In each iteration, LS takes an action (i.e., Move, Swap or
Replace) that improves the objective most; LNS selects five
to ten hosts as a sub-problem and solves it with systematic
search. Both algorithms are evaluated for 100 rounds. In each
round, the algorithms run for 60 seconds in IDC1 and 150
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seconds in IDC2. The maximum ratio of containers that are
allowed to be reassigned is set to 20% practically.

Fig. 1 and Fig. 2 respectively illustrate the average per-
formance of LS and LNS at each time tick as they run in
the two IDCs. To understand whether these two objectives
are fairly optimized, the values in the figures are after min-
max normalization processing (i.e., ||OBJU|| and ||OBJE||),
where the lower bound and upper bound of each objective
are respectively re-scaled to 0 and 1 in each IDC.

(a) Local Seach (b) Large Neighborhood Search

Fig. 1. Average performance in IDC1.

(a) Local Seach (b) Large Neighborhood Search

Fig. 2. Average performance in IDC2.

Moreover, to observe the performance fluctuation of the
corresponding algorithm, Fig. 3 compares ||OBJE|| in IDC2

as LS and LNS run to the 2nd second and 5th second2 in the
100 rounds of evaluation. Fig. 3 omits the curves of ||OBJU||
and those in IDC1, since the results are similar. From these
figures, we have the following three findings.

(a) The 2nd Second (b) The 5th Second
Fig. 3. Overall communication overhead in IDC2 at different moments.

1) Fairness Among Multiple Objectives: Although ωu ·
OBJU and −ωe · OBJE fall into the same numeric range in
each IDC, LNS fails to fairly optimize OBJU and OBJE in
IDC1, while LS fails to fairly optimize them in IDC2. We
contribute it to that both algorithms scalar multiple objectives
into a single objective by weighted sum, but it is non-trivial to
assign a proper weight for each objective. Relying on hand-
tuned parameters makes the algorithms inefficient to optimize
multiple objectives fairly.

2) Convergence Efficiency: LNS converges much slower
than LS. We attribute it to that LNS reassigns containers only
within a few hosts in each iteration. LNS obtains the optimal

2Note that LS tends to converge at the 5th second.

result of the sub-problems via a relatively complex procedure
(e.g., systematic search or optimization tools), which however
brings only a small improvement on the overall objective. LNS
needs to solve hundreds or even thousands of sub-problems
to make sure that any pair of the hosts has the chance to
exchange their workloads. On the contrary, LS converges faster
by migrating workloads efficiently in a global scope.

3) Performance Stability: As illustrated in Fig. 3, although
LS converges faster, it performs more unstably than LNS in the
100 rounds of evaluations. The reason why this phenomenon
occurs is that LS randomly reassigns a little number (typically
one or two) of workloads in each iteration, making it suffer
from aftereffects and resulting in unstable performance; while
LNS co-schedules more workloads, which enables it to achieve
the optimal result via multiple action sequences and results in
its stable performance.

To summary, these findings indicate three important design
principles of workload redistribution strategies:

• Strategy should not be sensitive to empirical parameters.
• Workloads should be efficiently migrated globally.
• The number of workloads considered in each iteration

should not be too small.
Thus, if we efficiently co-schedule several workloads glob-

ally each time and avoid hand-tuning parameters, we can reach
a trade-off between efficiency and stable performance.

V. MATCHING THEORY BASED WORKLOAD
REDISTRIBUTION

In this section, we first introduce matching theory. And then,
the feasibility and challenges of applying matching theory to
workload redistribution are further illustrated.

A. Matching Theory and Classic Solution

Matching theory [30] tries to build a stable matching3

between two sides of elements. According to the number of
elements on each side within a stable matching pair, matching
models can be divided into three categories [9], [31], i.e.,
one-to-one, many-to-one, and many-to-many. Among them,
many-to-one is the most similar to the workload redistribution
scenario. Meanwhile, College Admission Problem (CAP) is
a representative model of many-to-one matching. In CAP,
students apply for colleges, and each college accepts a specific
number (i.e., quota) of students. Each student have a strict
order of preference over the colleges, and vice versa. CAP
aims to build a stable matching between the students and
colleges, so that each student is accepted by up to one college
and no college admits more students than its quota. Two sides’
mutual well-beings are jointly optimized by building such a
stable matching.

Deferred Acceptance (DA) algorithm [9] is a classic solution
to CAP. DA works in an iterative manner. In each iteration,
every unassigned student proposes to his/her favorite college
that has not rejected him/her yet. After that, each college puts

3The matching is stable if there do not exist two unmatched elements that
prefer each other to their current partners.
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its favorite quota proposals that it ever receives into its waitlist,
and rejects all other proposals if it receives more proposals
than its quota. The algorithm repeats until every student is
either in the waitlist of a college, or rejected by all the colleges.
The matching built by DA is stable and optimal [9].

B. Workload Redistribution with Matching Theory Perspective

Consider the process of workload redistribution: first, a set
of workloads are selected and unassigned from their current
locations; after that, the selected workloads are assigned to
proper hosts in the IDC. Note that each workload is assigned
to exactly one host and one host holds multiple workloads. In
other words, there essentially exists a many-to-one matching
between workloads and hosts, and reassigning the workloads
is essentially updating this matching. These observations mo-
tivate us to apply matching theory to workload redistribution.

However, there are differences between CAP and workload
redistribution. There are the following challenges in applying
matching theory to the workload redistribution scenario.

1) Workload Selection: Matching theory aims to build a
matching between two given sets of elements. In our prob-
lem, we have to answer two questions before performing
matching. First, what kind of workloads should be selected
and unassigned in each iteration? It is a common practice
to select workloads based on the status of the hosts, and
the workloads located on high-cost hosts are given higher
priority. This design optimizes the objective greedily. Note
that existing methods usually apply weighted summation to
optimize multiple objectives, which simplifies the calculation
of hosts’ cost. We attempt to avoid empirical parameters in
optimization, making it non-trivial to tell a host’s cost. Second,
how many workloads should be reassigned in each iteration?
Reassigning more workloads helps to mitigate harmful after-
effects. However, unassigning a large number of workloads
will frozen much resource because of Transient Constraint
defined in Eq. (9), which leads to insufficient free resource
to subsequent migrations. Besides, it also easily violates the
Migration Constraint defined in Eq. (10).

2) Preference Computation: In CAP, students and colleges
have their preference for the other side. However, the pref-
erences of workloads and hosts in our problem are not as
intuitive as that in CAP. In fact, we can mimic variable
assignment strategies by designing proper preference schemes.
For example, if the hosts prefer workloads with higher re-
source demand and the workloads prefer hosts with more free
resources, we essentially assign workloads according to the
Worst Fit Decreasing (WFD) strategy [32]. In other words,
we need to design the preference computation mechanism
carefully to better optimize multiple objectives.

3) Applicability of Classic DA Algorithm: One limitation of
classic DA algorithm is its high computation complexity. In
our problem, we need to perform a matching process in each
iteration. Running classical DA once per iteration harms the
efficiency of the solution. Moreover, compared with CAP, we
have to obey the workload-redistribution-specific constraints

when updating the matching. Hence, we cannot simply apply
classic DA algorithm to assign selected workloads to hosts.

VI. Themis: WORKFLOW AND KEY MECHANISMS

In this section, we mitigate the challenges in Section V-B
and propose a matching-theory-based workload redistribution
solution, i.e., Themis.

A. Workflow

As illustrated in Fig. 4, Themis is implemented as a com-
ponent of the cluster orchestrator that manages the virtualized
IDC. Specifically, after container migration (including new
container creation) occurs, the monitor monitors various indi-
cators of the data center in real time, including the following:

• Host configuration: It describes the host configuration
in the IDC, including details such as ID, location, IP
address, and amount of resources, and is stored in a
real-time database. Themis reads this information from
the database on demand when specifying a container
redistribution solution.

• Application information: It describes the characteristics
of distributed applications in IDC, including ID, resource
requirements, number of containers and replicas owned,
etc. This information is also stored in the real-time
database as input to Themis.

• Current status: It mainly includes information such as
the location of each container, the resource utilization of
each host, and network bandwidth consumption. Themis
can request this information from the monitor on demand.

Fig. 4. Control flow of the cluster orchestrator integrated with Themis.

Particularly, our proposed Themis is triggered when the
resource utilization imbalance or communication overhead
exceeds the pre-configured thresholds. As illustrated in Al-
gorithm 1, Themis redistributes the workloads iteratively until
reaching the maximum running time. In each iteration, Themis
first selects a set of workloads that to be reassigned (Line 4);
After that, the selected workloads and all hosts in the IDC
compute their preference lists (Line 5 to Line 8); Finally,
Themis resorts to matching theory to assign the selected
workloads to the hosts (Line 9). The mechanisms of workload
selection, preference computation, and efficient matching are
detailed as follows.

B. Adaptive Workload Selection

Similar to prior studies, Themis selects containers based on
the status of the hosts. Generally, overutilized hosts account
for a small proportion in the IDC, and the containers on these
hosts should be given more emphasis to balance resource
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Algorithm 1: Workflow of Themis
1 timeb ← time();
2 timec ← timeb;
3 while timec − timeb < T do
4 Creassign ← WorkloadSelection();
5 foreach c ∈ Creassign do
6 PreferenceComputation(c, H);

7 foreach h ∈ H do
8 PreferenceComputation(h, Creassign);

9 EfficientMatching();
10 timec ← time();

utilization. For those non-overutilized hosts, which account for
a major part, we select the containers on them with a relatively
low probability to optimize overall communication efficiency.

Algorithm 2: WorkloadSelection()
1 Creassign ← ∅;
2 pmin ← 0;
3 pmax ← 1;
4 U ← max{Uh

r |∀h ∈ H, ∀r ∈ R};
5 for i← 1 to N − 1 do
6 if U ∈ [U i, U i+1) then
7 pmin ← pimin;
8 pmax ← pimax;
9 break;

10 foreach h ∈ H do
11 Uh = max{Uh

r |∀r ∈ R};
12 if Uh > Û then
13 p(h)← pmin + (pmax − pmin) · U

h−Û

1−Û
;

14 else
15 p(h)← p̂;

16 Ch ← Sample containers on host h with probability p(h);
17 Creassign ← Creassign ∪ Ch;

18 return Creassign;

As illustrated in Algorithm 2, we propose an adaptive
workload selection mechanism. The unbalanced degree of
resource utilization is divided into N levels. According to the
current unbalanced degree, Themis decides the numeric range
of sampling probability (i.e., [pmin, pmax]) for the resource-
constrained hosts (Line 5 to Line 9). For a host h, if its
dominant utilization4 Uh is above the borderline Û , Themis
sets p(h) to a value that is proportional to Uh to balance
resource utilization (Line 13); Otherwise, Themis set p(h) to a
borderline value p̂ to improve global communication efficiency
(Line 15). Finally, Themis samples the containers on h with a
probability of p(h). Particularly, if the number of reassigned
containers has reached the threshold λ·∥C∥ in Eq. (10), Themis
only selects the containers that have already been migrated.

C. Preference Computation
We design the following preference computation mechanism

to fairly optimize OBJU and OBJE.

4The dominant utilization of host h is defined as the maximum utilization
of multiple types of resources, i.e., Uh = max{Uh

r |r ∈ R}. A host is
regarded as a resource-constrained host if its dominant utilization is above
the borderline Û .

Algorithm 3: EfficientMatching()
1 Initialize a waitlist Yh ← ∅ for each host h;
2 foreach c ∈ Creassign do
3 Sort the hosts in its preference list Lc in descending order

according to c’s preference;
4 foreach h ∈ Lc do
5 if Yh is empty then
6 if the free resource of h is sufficient for c then
7 if c does not conflict with any container on h

then
8 Record c in h’s waitlist Yh;

9 foreach h ∈ H do
10 Migrate the container in Yh to host h;

1) Hosts’ Preference: Hosts prefer the workloads that are
good for balancing the resource utilization, which helps to
enhance the service capacity of the IDC. More specifically,
hosts prefer the workloads that reduce the gap between its
current resource utilization and the optimal utilization.

For a host h and a container c, we define a standardized
variable θc in proportion to the Cosine Similarity5 between
the vectors {Ūr−Uh

r |r ∈ R} and {cr|r ∈ R}, where Ūr (i.e.,
Eq. (2)) is the optimal utilization of resource r, Uh

r is the
utilization of resource r on host h, cr is container c’s demand
on resource r. The preference list of each host h ∈ H is
generated based on θc. The larger θc, the more host h prefers
container c. Specifically, a negative θc means that the resource
utilization becomes more unbalanced if assign c to h.

2) Containers’ Preference: Containers prefer the hosts that
guarantee the application’s performance. Particularly, contain-
ers evaluate the hosts from two aspects. First, a container
prefers a host accommodating more of its peers6, which is
expected to improve the communication efficiency of the ap-
plication. Second, a container likes a host whose free resource
is homogeneous to its resource demand, which ensures that
the container’s dominant demand7 will be better satisfied.

For a container c and a host h, we define two standardized
variables θcp and θuh . θcp is in proportional to the number of
c’s peers on h. θuh is in proportion to the Cosine Similarity
between the vectors {cr|r ∈ R} and { Ūr−Uh

r

|Ūr−Uh
r | |r ∈ R}, where

cr is the container c’s demand on resource r and Ūr−Uh
r

|Ūr−Uh
r |

is the normalized gap between h’s resource utilization and
the optimal utilization. The preference list of container c is
generated based on θh = θch + θuh . The larger θh, the more
container c likes host h.

D. Efficient Matching for Workload Redistribution
We design an efficient matching mechanism in Algorithm 3

to assign the selected containers to the hosts. Particularly, each

5The Cosine Similarity of two non-zero vectors is defined as similarity =
(A ·B)/(|A| · |B|). The output ranges from -1 to 1, where -1 means non-
similar and 1 means totally similar.

6The peers of container c refer to the containers that belong to the same
application with c. These containers will communicate with c in operation.

7The dominant demand of container c is defined as its maximum demand
on different types of resources, i.e., max{cr|r ∈ R}.
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selected container c proposes for at most one host (denoted
as h) that satisfies the following two conditions. First, the
waitlist of h is empty (Line 5). Second, migrating c to h will
not violate any constraint (Line 6 and Line 7). In this way,
the containers can be assigned to the hosts efficiently while
obeying the constraints defined in Section III-B.

VII. EVALUATION

In the evaluation, we seek to understand: 1) What is the
overall performance of Themis? 2) Is Themis sensitive to
parameter settings? 3) Can Themis improve the performance
of hybrid solutions? Accordingly, the relevant results are
summarized as follows.

• Overall performance: Themis outperforms representa-
tive workload redistribution solutions in terms of both
resource utilization balancing and overall communication
efficiency. Particularly, Themis can optimize multiple
objectives more egalitarian than existing solutions.

• Sensitivity: By halving and doubling the value of pa-
rameters in Themis, it has been demonstrated that Themis
works stable and is insensitive to parameter settings.

• Performance improvement to Hybrid-based Heuris-
tics: We use Themis to replace the LS components and
LNS components of a hybrid solution, and find that the
updated solution performs much better than the original
design. Themis shows the potential to improve the per-
formance of Hybrid-based heuristics.

A. Experimental Configuration

1) Environment: We perform the evaluations in two real-
world IDCs of Baidu (respectively denoted as IDC1 and
IDC2). IDC1 contains 2, 500+ hosts and 12, 000+ contain-
ers from 25 applications. IDC2 contains 5, 900+ hosts and
21, 000+ containers from 36 applications. In the IDCs, we
apply workload redistribution to improve the overall commu-
nication efficiency and balance the usage of three types of
resources, namely CPU, memory (MEM) and storage (SSD).

2) Solutions: The solutions that incorporate our proposed
Themis and the selected baseline methods for comparison are
listed as follows:

• Themis: Our proposed matching-theory-based approach.
• Noisy Local Search (NLS) [6]: It is the winner solution

to Google Machine Reassignment Problem (GMRP). And
NLS optimizes the distribution of the workloads by ac-
tions Move, Swap, and Replace.

• Large Neighborhood Search (LNS) [23]: In terms of
workload redistribution, LNS samples several high-cost
hosts as sub-problems, and utilizes systematic search to
redistribute workloads on the sampled hosts.

• Sweep&Search (S&S) [33]: It is a Hybrid-based heuristic
that redistributes workloads in two stages. In the first
stage, S&S migrates workloads from the underutilized
hosts to the medium utilized hosts, and then migrates
workloads from the overutilized hosts to the spared
underutilized ones. In the second stage, it applies local
search to further improve the workload distribution. The

first stage is essentially a LNS component, and the second
stage is essentially a LS component.

• Worst Fit Decreasing (WFD): In addition to the matching
theory, multi-resource bin packing strategy can also as-
sign the selected workloads to the hosts [32], [34]. To il-
lustrate the advantages of matching theory, we replace the
matching process in Themis (i.e., Line 9 in Algorithm 1)
with WFD strategy. WFD is a bin packing strategy that
focuses on load balancing. To assign a set of workloads
to the hosts, WFD sorts the workloads by their resource
demand in descending order, and in turn places them to
the host with the most free resource.

3) Parameter Setting: Regarding with each IDC, we evalu-
ate every solution for 100 rounds. In each round, the solutions
run for 60 seconds in IDC1, while run for 150 seconds
in IDC2. Particularly, if the number of migrated containers
reaches the threshold defined in Eq. (10), the solutions only
reassign the containers that have already been migrated.

Regarding the parameter configuration of our proposed
Themis, pimin ∈ [0.002, 0.01], pimax ∈ [0.01, 0.02], and
p̂ = 0.001. Moreover, evaluations demonstrate that Themis
is insensitive to these values.

In each iteration, LNS sorts the hosts by their contribution
to OBJ in Eq. (12). Among them, the top 4% are regarded as
high-cost hosts, and five to ten high-cost hosts are randomly
chosen as a sub-problem.

For a host h ∈ H, S&S uses
∑

r∈R(1 − Uh
r ) to measure

the free resource of h. The hosts are sorted by their free
resource in ascending order. Then the top 2% and tail 2% are
respectively regarded as underutilized and overutilized hosts,
and the remaining are regarded as medium utilized hosts.

NLS, LNS, and SS optimize multiple objectives by scaling
them into a single one with weighted sum as in Eq. (12). The
weights are set to make ωu · OBJU and −ωe · OBJE fall into
similar numerical ranges and optimized fairly.

In terms of WFD, the free resource of a host h is measured
by

∑
r∈R(1−Uh

r ), and the resource demand of a container c
is measured by max{cr|r ∈ R}.

TABLE II
AVERAGE PERFORMANCE OF DIFFERENT SOLUTIONS

Initial Value Themis NLS LNS S&S WFD

IDC1

OBJU 261.46 163.54 188.06 215.77 164.66 178.67

OBJE 3263 6548 5508 7316 5389 3236

∥OBJU∥ 0.44 0.18 0.25 0.32 0.19 0.22

∥OBJE∥ 0.19 0.44 0.36 0.50 0.35 0.19

∆ ∥OBJU∥ −0.26 −0.19 −0.08 −0.25 −0.22

∆ ∥OBJE∥ 0.25 0.17 0.31 0.16 0

IDC2

OBJU 528.39 343.41 475.81 419.70 425.18 447.94

OBJE 3515 8570 7089 8186 6536 4049

∥OBJU∥ 0.14 0.01 0.11 0.07 0.07 0.09

∥OBJE∥ 0.10 0.26 0.21 0.24 0.20 0.12

∆ ∥OBJU∥ −0.13 −0.03 −0.07 −0.07 −0.05

∆ ∥OBJE∥ 0.16 0.11 0.14 0.10 0.02
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B. Overall Performance

Table II summarizes the average performance of different
solutions with the 100 rounds of evaluations. In IDC1, our
proposed Themis reduces OBJU by 37.5% and enhances OBJE
by 100.7%. In IDC2, Themis decreases OBJU by 35% and
improves OBJE by 143.8%. These results demonstrate that
Themis outperforms other solutions in terms of both objectives,
i.e., resource utilization balancing (minimization of OBJU) and
overall communication efficiency (maximization of OBJE) in
almost all the cases.

To observe whether OBJU and OBJE are fairly optimized,
Table II further gives the value of the objectives that after
min-max normalization, (i.e., ∥OBJU∥ and ∥OBJE∥), where
the lower bound and upper bound of each objective are respec-
tively re-scaled to 0 and 1. Note that ∆ ∥OBJU∥ in the table is
negative, because we try to minimize OBJU in optimization.
In IDC1, Themis reduces ∥OBJU∥ by 0.26 and enhances
∥OBJE∥ by 0.25. In IDC2, Themis lowers ∥OBJU∥ by 0.13 and
increases ∥OBJE∥ by 0.16. Therefore, in addition to optimizing
multiple objectives simultaneously, Themis optimizes multiple
objectives more fairly than other solutions.

To understand the converge speed of the solutions, Fig. 5
demonstrates the average improvement of the objectives as the
solutions run. LNS and SS converge faster than the other meth-
ods, followed by Themis. Particularly, Themis outperforms the
other solutions after running for 20 seconds in the two IDCs.

(a) IDC1 (b) IDC2

Fig. 5. Convergence speed of different solutions.

To observe the performance when different ratio of contain-
ers that are allowed to be reassigned, Table III compares the
average performance of these solutions as λ in Eq. (10) are
set to 10% and 30%. For clarity, the table only gives the value
that after min-max normalization, i.e., ∥OBJU∥ and ∥OBJE∥.
Since migrating more containers can optimize the objectives
better, all solutions perform better as λ increases. Moreover,
independent of the value of λ, our proposed Themis outper-
forms the other solutions in terms of overall improvement as
well as fairness in multi-objective optimization.

C. Parameter Sensitivity of Themis

The newly proposed Themis requires to specify the range
of sampling probability [pimin, pimax] as well as the borderline
probability p̂ in operation. In each IDC, we halve and double
pimin, pimax, and p̂ to verify the sensitivity of Themis. As
illustrated in Table IV, no matter which IDC it is, parameter
changes cannot affect the performance (i.e., minimization of
OBJU and maximization of OBJE) of Themis. This reveals that
our proposed Themis is insensitive to the parameter settings,

TABLE III
AVERAGE PERFORMANCE UNDER DIFFERENT REASSIGNMENT

THRESHOLDS

Different Initial Themis NLS LNS S&SRatios Value

IDC1 ∥OBJU∥ 0.44 0.24 0.29 0.35 0.24

(λ=10%) ∥OBJE∥ 0.19 0.30 0.26 0.34 0.26

IDC1 ∥OBJU∥ 0.44 0.18 0.23 0.29 0.16

(λ=30%) ∥OBJE∥ 0.19 0.46 0.52 0.65 0.51

IDC2 ∥OBJU∥ 0.14 0.04 0.10 0.08 0.08

(λ=10%) ∥OBJE∥ 0.10 0.16 0.15 0.17 0.14

IDC2 ∥OBJU∥ 0.14 0.01 0.13 0.06 0.07

(λ=30%) ∥OBJE∥ 0.10 0.33 0.32 0.32 0.27

which guarantees a stable performance across different IDCs.

TABLE IV
PARAMETER SENSITIVITY OF Themis

Initial Themis Themis Themis
Value (1×) (0.5×) (2×)

IDC1

OBJU 261.46 163.54 163.82 164.38

OBJE 3263 6548 6583 6419

IDC2

OBJU 528.39 343.41 342.50 346.02

OBJE 3515 8570 8567 8555

D. Performance Improvement to Hybrid-based Heuristics

As a newly proposed method, if Themis is compatible with
existing methods, it will have a wider range of deployment
scenarios. To understand whether the newly proposed Themis
can improve the performance of Hybrid-based heuristics, we
replace the LNS component and NLS component of S&S [33]
with Themis, which evolved into a new workload redistribu-
tion scheme, namely Themis-Based S&S. More specifically,
Themis-Based S&S works as follows. In the first stage, it uti-
lizes Algorithm 3 to assign the containers on the underutilized
hosts to the medium utilized hosts, and to assign the containers
on the overutilized hosts to the underutilized hosts. In the
second stage, it applies Algorithm 1 to optimize the container
distribution in the whole IDC.

TABLE V
IMPROVEMENTS IN HYBRID METHODS

Initial Value S&S Themis-based S&S

IDC1

OBJU 261.46 164.66 163.93

OBJE 3263 5389 6626

IDC2

OBJU 528.39 425.18 355.48

OBJE 3515 6536 8547

As illustrated in Table V, Themis-based S&S significantly
outperforms S&S in all IDCs. Particularly, Themis-based S&S
optimizes OBJU and OBJE much more fairly than the original
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design. Therefore, our proposed Themis has the potential to
improve the performance of existing Hybrid-based heuristics.
In other word, the newly proposed method has good com-
patibility properties. In addition to directly serving workload
redistribution tasks, it can also be utilized as an auxiliary tool
for existing methods to further optimize various objectives.

VIII. RELATED WORK

With the trend of widespread application of deep learning
technologies [35]–[37], data is one of the important resources,
and the optimization of workload redistribution in IDCs can
provide better services for intelligent technologies. In this
section, we survey the solutions to the representative workload
redistribution problems, such as Google Machine Reassign-
ment Problem (GMRP), virtual machine reassignment, and
container redistribution. Finally, we discuss the applications
of matching theory in IDCs.

A. Existing Workload Redistribution Solutions

Exact Methods. Rui et al. [10] propose a multi-objective
optimization solution to rebalance VM placement. Terra et
al. [11] adopt a boolean optimization solver for VM reas-
signment. Although optimization-based solutions can find the
optimal solution, they are inefficient in large-scale scenarios
due to high complexity [6].

LS-based Heuristics. Gavranović et al. [6] propose the
winner solution to GMRP, i.e., Noisy Local Search (NLS),
which combines LS and noising strategy in workload redis-
tribution. Turky et al. [16], [19] propose a series of parallel
algorithms, where multiple LS modules work together to
avoid local optima. An improved great deluge algorithm is
proposed in [18], which considers more neighborhoods to
navigate the search space. A simulated annealing algorithm
is designed by Turky et al. [20], which uses Move and Swap
to optimize workload distribution. Guo et al. [12] and Li et
al. [13] improve load balancing in cloud with particle swarm
optimization based algorithms. An ant colony optimization
based solution is proposed by Kaewkasi et al. [14], which can
balance resource usages for Docker. In addition, Lin et al. [15]
utilize the ant colony optimization technique to optimize multi-
objectives in container-based cloud.

LNS-based Heuristics. Mrad et al. [21] formulate GMRP
as a Mixed-Integer Programming (MIP) problem, and utilize
a Mixed Integer Linear Programming (MILP) solver to solve
the sub-problems. Brandt et al. [22] and Mehta et al. [23]
transform GMRP into Constrain Programming (CP) forms, and
respectively apply a CP solver and systematic search technique
to solve the sub-problems.

Hybrid-based Heuristics. Saber et al. [25] propose a series
of comprehensive methods that integrate LS algorithms and
genetic algorithms. Jaskowski et al. [26] divide the problem
into sub-problems, and utilize MIP solver to solve the sub-
problems, and then apply hill climbing technique to further
improve the results. Butelle et al. [27] propose a fast machine
reassignment approach, where a LS component and a LNS
component run in parallel to produce better results. Zhang et

al. [33] design a two-step solution Sweep&Search, which first
utilize LNS to roughly balance resource utilization and then
applies LS to find-tune the container distribution.

B. Applications of Matching Theory in IDCs

There has been some explorations on the utilization of
matching theory in IDCs. For example, Dhillon et al. [38]
map VM placement into the stable-marriage problem and place
the VMs according to their characteristics (i.e., computation
intensive, memory intensive, etc.). Azougaghe et al. [39]
propose a matching game based algorithm for secure-aware
VM placement. Xu et al. [40] design an egalitarian match-
ing framework for VM placement. Wang et al. [41] apply
matching theory to place VMs, thereby optimizing resource
utilization as well as the quality of service. Xu et al. [42]
propose a matching theory based resource scheduling approach
to optimize the resource utilization of IDC as well as the
response time of jobs. Chen et al. [43] adopt matching theory
in container deployment to improve resource utilization rate.
Sangar et al. [44] apply the stable marriage model to build one-
to-one matchings between overutilized hosts and underutilized
hosts, and then migrates the workloads from overutilized hosts
to the underutilized ones to balance CPU utilization.

These solutions cannot be applied to the issue that this paper
focuses on. First, most of above researches focus on workload
placement (i.e., deploy new workloads into the IDC), which is
different from the workload redistribution issue. Second, the
models proposed by these researches are simple and ideal,
which makes them inapplicable in real-world systems.

IX. CONCLUSION

Workload redistribution has been widely studied in recent
years. However, the performance (e.g., resource utilization
balancing, overall communication efficiency, fairness among
multiple objectives, parameter sensitivity, and compatibility
with existing methods) of existing solutions in real-world
scenarios is still unsatisfactory. This paper aims to rethink
existing approaches in depth and propose an efficient yet
universal solution to workload redistribution with large-scale
IDCs in the real world.

Based on comprehensive case studies, we find that reas-
signing multiple workloads globally each time and avoiding
experience-based parameters are critical for effective workload
redistribution. Inspired by the observations, we propose the
matching-theory-based workload redistribution solution, i.e.,
Themis. Extensive evaluations on real-world IDCs demonstrate
that our proposed Themis significantly outperforms the alter-
native solutions and provides a promising way to improve
workload redistribution in real-world scenarios.
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