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Abstract—Deep learning-based classifiers have been widely
used in the field of financial fraud transaction detection. However,
training a high-performance classifier for fraud detection is
challenging due to the lack of sufficient labeled fraud data.
Particularly, it is difficult to detect stealthy fraud transactions
that closely mimic benign user behaviors. We observe that
the suspicious transactions identified by the online detection
system can augment the feature space to improve the detection
performance of machine learning-based models. In this paper,
we propose a new framework GIANTESS to leverage suspicious
transactions to augment the feature space and thus enhance the
detection of stealthy fraud transactions. Our semi-supervised
approach combines both labeled transactions and unlabeled
suspicious transactions to train a detection model. Specifically, it
first estimates pseudo labels of suspicious transactions and then
combines the pseudo labels with ground truth labels to train
the detection model. We conduct experiments on two real-world
datasets to demonstrate the effectiveness of our proposed method
on detecting stealthy fraud transactions. The experimental results
show that GIANTESS successfully improves the recall by up
to 6.3% at the fixed low false positive rate of 1%. We also
perform a 9-week deployment test of our system in a real-
world online payment platform to demonstrate the performance
of GIANTESS.

Index Terms—Fraud Detection, Deep Learning

I. INTRODUCTION

An online payment system is a digital platform that facili-
tates the electronic transfer of money between parties over the
Internet. It has become an indispensable application on the
Internet, enabling users to make transactions from anywhere
with an Internet connection. However, fraudsters may conduct
unauthorized or deceitful activities in fraud transactions to ob-
tain money or valuable assets through deceptive means. They
often exploit weaknesses in security systems or manipulate
individuals into disclosing sensitive information. It is crucial
for financial institutions to implement robust security measures
to detect fraudulent activities effectively.

A wide range of fraud detection techniques have been
developed [1]–[8], and they can be classified into two cat-
egories, namely, rule-based methods and machine learning-
based methods. Rule-based methods [1] detect fraud transac-
tions according to fraud patterns discovered by experts, thus
achieving good detection interpretability and deployability.
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Fig. 1: The illustration of our idea. Utilizing suspicious trans-
actions can augment the feature space and thus improve the
performance of detection models.

However, they heavily rely on expert knowledge to establish
and update rules and may fail to discover complex patterns.
Machine learning-based methods [2]–[8] enable an automated
approach to capturing complex fraud patterns from a large
size of training data. Nevertheless, the effectiveness of these
methods depends on the feature space of available transactions.

Since fraud transactions are rarer comparing to benign
transactions, it remains a challenge to distinguish the stealthy
fraud transactions that have similar patterns and features
to the benign transactions. For example, adversaries can
compromise the accounts of normal real users [9], [10] or
grow up accounts that imitate benign ones before conducting
fraud transactions [11]. Such stealthy fraud transactions can
easily evade existing detection systems due to their similarity
to benign transactions.

In this paper, we aim to detect stealthy fraud transactions
by utilizing unlabeled suspicious transaction records that are
identified and interrupted by the existing detection systems.
We observe that suspicious transactions include both potential
fraud transactions and ambiguous benign transactions, thus
providing rich and diverse information in the feature space.
Therefore, suspicious transaction records are promising to
effectively augment the feature space for improving the per-
formance of detection models. Figure 1 illustrates this idea. To
this end, we develop GIANTESS, a novel framework leverag-
ing suspicious transactions to enhance the detection of stealthy
fraud transactions. GIANTESS incorporates suspicious trans-
actions into the training dataset of the detection model. The
detection model is trained with suspicious transactions that
are potentially fraud as a supplement to the labeled fraud



transactions, alleviating the risk of under-fitting caused by
insufficient fraud transactions. Also, it utilizes the remaining
ambiguous benign transactions to refine the decision boundary.

We face three challenges when leveraging suspicious trans-
actions to better differentiate stealthy fraud transactions from
benign ones. First, there are no accurate labels for suspicious
transactions that have been interrupted. In other words, no
external feedback is available since these transactions are not
finished. This indicates that the exact proportion of suspicious
transactions that are actual fraud remains uncertain, and this
uncertainty is influenced by multiple factors, including the
performance of the detection system and strategies applied
by adversaries. Consequently, indiscriminately labeling sus-
picious transactions as all fraud or all benign will introduce
massive label noise to the dataset, thereby degrading the model
performance. Second, suspicious transactions exhibit a distinct
distribution compared to completed transactions. This is be-
cause suspicious transactions conform to patterns defined by
the existing detection system, while completed transactions do
not. It complicates the process of accurately assigning labels to
such transactions. Third, the volume of suspicious transactions
is different in scale compared to either fraud or benign
transactions. This imbalance may induce a bias in prediction.

To resolve these challenges, GIANTESS works in a semi-
supervised manner in two stages to combine unlabeled sus-
picious transactions with labeled completed transactions. We
generate pseudo labels for suspicious transactions to augment
the input feature space of the model with these transactions. To
overcome the first challenge, we propose a data augmentation-
based training method to obtain a labeling model, which can
produce scores to faithfully represent the risk of malicious
transactions and serve as their pseudo soft labels. The data
augmentation technique enables our model to generalize to
both in-distribution and out-of-distribution samples, thereby
solving the second challenge. Moreover, we obtain a detec-
tion model utilizing both labeled transactions and unlabeled
suspicious transactions. To overcome the third challenge, it is
trained using a specially designed hybrid loss that combines
the pseudo soft labels with the ground-truth hard labels. The
proposed loss function augments the hidden feature space by
paying more attention to transactions that are more likely to be
fraud, which alleviates the impact of class imbalance to ensure
that the model fully utilizes the suspicious transactions.

We conduct an extensive evaluation of our proposed frame-
work using two real-world datasets from a world-leading
online payment platform. When fixing the false positive rate
at 1%, GIANTESS successfully achieves an average improve-
ment of the recall in the account takeover detection scenario
by 6.3%, and the recall in the deception fraud scenario by
5.9%. By manually analyzing the additional account takeover
fraud transactions detected by our method, we find that 45.9%
of them are stealthy fraud transactions with similar patterns to
benign ones. We also deploy our proposed framework in real-
world production to demonstrate its effectiveness.

In summary, we make the following contributions:
• We propose a framework GIANTESS to find stealthy fraud

transactions by incorporating suspicious transactions col-
lected by online detection systems into the training of
detection model.

• We design a method for generating pseudo labels, which
performs data augmentation to train a labeling model that
can generalize to both in-distribution and out-of-distribution
samples. We also propose a hybrid loss training approach
to train a detection model that combines pseudo labels with
ground-truth labels and focuses on samples that are likely
to be fraud.

• We conduct experiments on real-world data collected from
an online payment platform, showing the effectiveness of
GIANTESS to detect stealthy fraud transactions. We also
perform real-world deployment test for a total of nine weeks.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we provide a brief overview of the fraud
transaction detection system on online payment platforms and
the identification process for suspicious transactions and then
formalize our problem.

A. Background

Online payment platforms adopt fraud transaction detec-
tion systems that integrate rule-based methods and machine
learning-based classifiers to capture patterns that are indicative
of fraud behaviors. As illustrated in Figure 2, throughout
the whole process of detection, we collect fraud, benign,
and suspicious transactions. Specifically, the detection system
examines each transaction submitted for execution. If the de-
tection system identifies it as with more suspicion to be a fraud
transaction, i.e., is a suspicious transaction, the transaction will
be interrupted. Otherwise, the transaction will proceed to be
executed promptly. Once a transaction is executed, it is labeled
according to external feedback with supporting evidence, e.g.,
bank complaints and feedback from law enforcement. The
platform responds to the feedback by manually examining
whether the transaction is fraudulent. If no feedback is raised
or the feedback is not confirmed to be fraud within a specific
period from the execution of the transaction, this transaction
will be automatically labeled as a benign transaction.

As discussed in the Introduction, it is non-trivial to leverage
suspicious transactions to train detection models. Therefore,
usually only fraud transactions and benign transactions are
utilized as training samples in training supervised machine-
learning models for fraud detection. Transactions identified as
suspicious lack labeling because of the absence of subsequent
feedback after the interruption, and are thus overlooked in
the training phase. Nevertheless, these suspicious transactions
manifest unique patterns that the detection system identifies,
and excluding them from the model training could lead to an
insufficient representation of the feature space. Particularly, the
feature space of fraud samples is disproportionately impacted
by the act of interrupting suspicious transactions, since it
significantly diminishes the volume of fraud transactions,
which in turn compromises profiling fraud samples.
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Fig. 2: The identification of benign, fraud, and suspicious
transactions in an online detection system.

B. Problem Statement

We consider that we are given both labeled transactions
and unlabeled suspicious transactions on the online payment
platform described in Section II-A, where each transaction is
represented using numerical or categorical features with the
same dimension. Labeled transactions consist of fraud trans-
actions and benign transactions, referred to as fraud samples
and benign samples, respectively. We consider labeled samples
define the target distribution. Unlabeled transactions are suspi-
cious to be fraud according to the fraud patterns defined by the
detection systems. We designate these suspicious transactions
as suspicious samples. Note that since unlabeled suspicious
samples conform to fraud patterns while labeled samples do
not, they follow a distribution different from the target distribu-
tion. We verify this claim in Section V. The underlying label of
each suspicious sample should be either fraud or benign. Note
that due to the nature of fraud detection systems, the quantities
of fraud, benign, and unlabeled suspicious transactions exhibit
significant disparities, with benign transactions predominating,
followed by suspicious transactions, and fraud being the least.

We aim to develop a detection model that can distinguish
between benign and fraud samples, i.e., perform binary classi-
fication on the target distribution, using benign, fraud and sus-
picious samples for training. Formally, the dataset of labeled
samples is represented by DL = {(x1, y1), · · · , (xn, yn)},
where xi and yi ∈ {0, 1} denote the features and binary label
of the i-th data samples. Here, yi = 0 indicates a benign
sample and yi = 1 indicates fraud. Suspicious samples are
represented by the set DU = {x′1, . . . , x′m}. We have n ≫ m.
The detection model S predicts samples that are from the
same distribution as DL. For each sample x, it outputs the
probability of being fraud, denoted by pS(x).

It is worth noticing that such suspicious data is a common
issue in online detection systems. Generally, online detec-
tion systems identify suspicious instances that lack high-
quality labels, according to historical information. However,
the proportion of suspicious instances being malicious might
vary across different detection systems, and the number of
labeled instances can also be significantly different according
to different labeling strategies. For example, focusing on abuse
account detection on online social networks, prior work lever-
ages these suspicious accounts with a precision higher than
90%, and obtains fewer labeled accounts than these suspicious
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Fig. 3: The overview of our proposed framework.

accounts [9]. In this paper, we consider a more generic setting
where the proportion of suspicious instances being malicious
is unknown. Moreover, since whether a transaction is fraud
is determined once finished, we can determine the labels of
the finished transaction in a time window, thus obtaining more
labeled data than suspicious data.

III. OVERVIEW

We propose GIANTESS, a novel framework leveraging
suspicious transactions to enhance the detection of stealthy
fraud transactions. GIANTESS is a semi-supervised model
training framework that generates accurate pseudo labels for
out-of-distribution suspicious transactions and incorporates
them into the detection model training to augment the input
feature space. Besides, a novel hybrid loss function is proposed
to effectively leverage the pseudo labels and ground truth
labels simultaneously. Trained upon such an augmented input
feature space with the proposed loss function, the detection
model obtains a better decision boundary that can distinguish
stealthy fraud transactions from benign transactions.

Figure 3 illustrates the workflow of our proposed frame-
work. It follows the two stages below:
• Pseudo label generation estimates the pseudo labels of out-

of-distribution suspicious samples to facilitate the training of
the downstream detection model with an augmented feature
space. To generate accurate pseudo labels, we design a
general data augmentation-based training method to obtain
a labeling model with all benign and fraud samples. The
data augmentation is performed by interpolating the hidden
feature space of the model under training, so that the
trained labeling model possesses a smooth classification
boundary that can generalize well on both out-of-distribution
suspicious transactions and in-distribution transactions.

• Hybrid label training obtains a detection model with both
labeled transactions and suspicious transactions. The model
is trained using a specially designed hybrid loss that fully
utilizes the labeling information of ground-truth hard labels
and pseudo soft labels by paying more attention to wrongly
classified transactions that are likely to be fraud. By training
with the hybrid loss function, the model can more effectively
distinguish stealthy fraud transactions with similar patterns
to benign transactions.
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IV. DESIGN DETAILS

In this section, we present the detailed designs of compo-
nents in GIANTESS.

A. Pseudo Label Generation

To facilitate the model training with unlabeled suspicious
transactions, the first step of GIANTESS is to generate pseudo
labels for them with a labeling model. One trivial method
for generating pseudo labels for unlabeled samples is directly
training a classification model with the labeled transactions
only, and then using the prediction of the model as the
pseudo labels. However, this method requires that the features
of unlabeled suspicious transactions follow exactly the same
distribution as those of labeled transactions, which is not
the case in real-world applications. A simply trained model
can have poor OOD generalization performance and thus
produce inaccurate pseudo labels. Considering that the volume
of suspicious transactions is much larger than the labeled
fraud transactions, such inaccurate pseudo labels may even
downgrade the in-distribution performance of downstream
models due to the overwhelming label noise. Therefore, our
main goal is to generate accurate pseudo labels that can
faithfully describe the risk level of both in-distribution and
out-of-distribution transactions.

To achieve this goal, we propose to leverage the data aug-
mentation technique to enhance the out-of-distribution general-
ization performance of the labeling model, thereby accurately
predicting the risk level of the suspicious transactions as
their pseudo labels. Intuitively, we interpolate the features
and labels of labeled training samples, so that the model
learns to predict the mixture of fraud and benign samples
and finally gets a smoother decision boundary. Such data
augmentation strategies are common methods to improve OOD
generalization performance [12]. By augmenting the data, the
hidden feature space of the model will be augmented, which
enhances the quality of pseudo labels.

However, the features of transactions in the fraud detection
task usually contain both numerical and categorical types. It is
unreasonable to directly interpolate categorical features, since
these features are discrete and directly interpolating them will
break the semantics. To deal with this issue, we choose to
perform interpolation on the output feature map of a selected
hidden layer, following the idea of manifold mixup [13].
Such an interpolation-based augmentation method brings
two benefits. First, it can naturally adapt to different fraud
detection tasks since the feature maps of hidden layers are
continuous no matter whether the input features are discrete
or not. Second, the feature maps of hidden layers extract and
amplify the risk-related patterns in the raw inputs, and thus
interpolating the feature maps of benign and fraud samples
is effective to improve the generalization performance on
suspicious transactions and stealthy transactions whose
patterns are similar to benign transactions.

The procedure for training the labeling model with the data
augmentation technique is described below. First, for each
batch of training samples, they are fed into the model under

training and pass the forward computation of the first several
hidden layers. After the computation of the selected hidden
layer, the hidden feature maps of the batched samples are taken
out. For each sample, we randomly choose another sample in
the batch and interpolate their feature maps and labels linearly.
Formally, let h(x) denote the feature map of a sample with
feature x after passing the selected hidden layer, the linear
interpolation between a pair of samples (xi, yi), (xj , yj) ∈ DL

is computed as follows:

h(xi,j) = λ · h(xi) + (1− λ) · h(xj), (1)

yi,j = λ · yi + (1− λ) · yj . (2)

The coefficient λ is sampled from a beta distribution B(α, α),
where α ∈ (0, 1) is a hyper-parameter controlling the
degree of interpolation. With a larger α, there is a higher
probability that the sample pairs are interpolated evenly, which
smooths the decision boundary at the cost of in-distribution
performance since the feature map distribution is substantially
changed. After interpolation, the interpolated batch of h(xi,j)
is fed back to the rest layers of the labeling model to perform
the prediction, compute the loss against the interpolated labels
yi,j and finally update parameters with backpropagation and
gradient descent. Note that the interpolation calculation is
differentiable, and thus all the layers in the model are trained
together in an end-to-end manner.

After training the labeling model, we use the confidence
score of the labeling model on suspicious samples as their
pseudo labels. Instead of using the classification decision
(i.e., the hard label) of the labeling model, the confidences
of suspicious transactions reflect the estimated risk level of
these transactions. Using continuous confidence scores rather
than discrete hard labels as pseudo labels can alleviate the
problem of the downstream model being overconfident in
classifying suspicious samples. Specifically, for each sample
x, our labeling model, represented by T , generates a soft label
pT (x), rather than a hard label that is either 0 or 1.

B. Hybrid Label Training

After obtaining the pseudo labels, we use the labels to train
the downstream fraud detection model. To fully utilize both
suspicious samples and labeled fraud and benign samples, we
design a novel hybrid label training method, which combines
soft pseudo labels and hard ground-truth labels and employs
a novel loss function to focus on the fraud transactions
that are similar to benign ones. By utilizing the unlabeled
suspicious transactions, the input feature space is augmented,
and the design of our hybrid loss function further augments the
hidden feature space by paying more attention to the wrongly
classified fraud transactions.

The design of our hybrid label loss function contains two
parts, i.e., the pseudo label loss and the hard label loss. The
pseudo label loss calculates the discrepancy between the out-
puts of the detection model under training and the risk level of
transactions estimated by the labeling model. To achieve this,
one straightforward way is to compute the distribution distance
between the detection model and the labeling model, e.g., by
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calculating the Kullback–Leibler divergence (KL divergence)
between the two distributions. However, in real-world fraud
transaction detection scenarios, the magnitude of benign trans-
actions is far greater than that of fraud transactions. Therefore,
the distributions of model outputs and labels are highly skewed
toward benign, making it hard to optimize the distribution
distance metric. Consequently, the detection performance on
fraud transactions will be impacted.

To deal with this issue, we develop a simple yet effective
loss function based on the KL divergence that can give more
attention to wrongly classified transactions with high risk, yet
less attention to the already correctly classified ones. The loss
function is calculated as follows. First, given the sample x,
we calculate the detection model’s prediction pM (x) to the
kth power. Then, we calculate the KL divergence between the
result and the pseudo label as the pseudo label loss, denoted
as LPL. The calculation is as follows:

LPL =
∑

x∈DU∪DL

[
pT (x) · log pT (x)

pM (x)k
+

(1− pT (x)) · log 1− pT (x)

1− pM (x)k

]
,

(3)

where pT (·) denotes pseudo labels generated by the labeling
model. The hyper-parameter k controls the importance of high-
risk samples in the loss function. Note that both unlabeled sus-
picious transactions and labeled transactions are used to calcu-
late LPL to augment both the input and hidden feature spaces.

Now we provide the insight behind our pseudo label loss
function. Mathematically, the difference between our pseudo
label loss and the vanilla KL divergence LKL (i.e., LPL when
k = 1) is:

LPL − LKL =
∑

x∈DL∪DU

[
(1− k)pT (x) · log pM (x)+

(1−pT (x)) · log 1− pM (x)

1− pM (x)k

]
.

(4)

Since the model prediction is between 0 and 1, log pM (x) is
always negative. Therefore, we have the observation that when
k is larger than 1, the first item of the right side of Equation (4)
is greater than 0, while the second item is smaller than 0. This
indicates that, when using our proposed loss instead of the
vanilla KL divergence, the loss values of fraud transactions
will be enlarged while the loss values of benign transactions
will be reduced. Recall that the number of fraud transactions
is far less than that of benign transactions. Such behavior of
our loss function helps to fully utilize fraud transactions.

We also visualize the landscape of the pseudo label loss
when k = 2 in Figure 4 as an example. It can be seen that the
loss function yields a larger value when a fraud transaction
is mistakenly classified as a benign one, a relatively smaller
value when a benign transaction is classified as a fraud one,
and the smallest value when the prediction of the detection
model and the labeling model are similar. Therefore, compared
to other methods for dealing with the class-imbalance problem
such as assigning the fraud transactions a large sample weight,
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Fig. 4: The visualization of our pseudo label loss when k = 2.

our pseudo loss function pays more attention to the wrongly
classified fraud ones, i.e., ones significantly going beyond the
decision boundary in the hidden feature space. By optimizing
our loss function, these samples will leave the manifold of
benign transactions in the hidden space and the decision
boundary of the trained model will become more clear. This
can enhance the detection performance on stealthy fraud
transactions that are similar to benign ones. Moreover, the
introduction of unlabeled suspicious transactions in the pseudo
label loss function also augments the input feature space.

The proposed pseudo label loss only minimizes the differ-
ences between the predictions of the detection model and the
labeling model, regardless of whether the prediction results are
consistent with the ground truth. Therefore, we also calculate
the cross entropy between the predictions of the detection
model on labeled transactions and the corresponding ground
truth hard labels. The final loss function is as follows:

L = ϵ · LPL + (1− ϵ) · LCE , (5)

where ϵ is a hyper-parameter that balances the pseudo label
loss and the hard label loss LCE (i.e., the cross entropy loss
between log pM (x) and the hard label). By optimizing the loss
above using both suspicious and labeled transactions, we can
finally obtain a detection model with augmented input and
hidden feature space.

V. EVALUATION

In this section, we demonstrate the effectiveness of GI-
ANTESS with extensive experiments on real-world datasets
collected from a world-leading online payment platform. The
evaluations are carried out to answer the questions below:
• Q1. How effective is our proposed framework in detecting

stealthy fraud transactions?
• Q2. How does each component in our framework contribute

to the detection?
• Q3. How robust is our proposed framework under different

parameter settings?

A. Experiment Settings

Datasets. We collect two datasets of different fraud detection
scenarios provided by a world-leading online payment plat-
form. The two scenarios are as below:
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TABLE I: Size of datasets.

# Fraud # Suspicious # Benign

Account Takeover
Train 1,098 532,650 6,316,907
Valid 265 - 1,584,670
Test 1,256 - 9,037,962

Deception Fraud
Train 1,109 748,910 6,316,907
Valid 278 - 1,584,670
Test 1,374 - 9,037,962

• Account takeover. In this scenario, the fraudsters take over
the victims’ accounts via fishing scams, social engineering,
or other techniques, and then they conduct fraud transactions
using the stolen accounts.

• Deception fraud. In this scenario, the fraudsters use vari-
ous deception methods, such as telecom fraud and online
cheating, to induce victims to transfer money to them.

The datasets are described in Table I. For each dataset, all
transactions are split into the training set, the validation set,
and the testing set. It can be seen that the datasets are
extremely imbalanced, where the number of benign samples
is hundreds of times of that of fraud samples. Note that
the validation set and testing set do not contain suspicious
transactions. This is because these transactions are detected
and interrupted by the rule-based detection system and our
method focuses on detecting the fraud transactions that es-
caped the previous detection. We collect the ground truth
of transactions following the procedure described in Section
II-A. Each transaction has 242 features, 30 of which are
categorical and the others are numerical. These features essen-
tially describe the security-related information as well as the
historical trading behaviors of the transactors. Due to privacy
and commercial confidentiality issues, the exact meanings of
feature columns are not available. To validate that suspicious
transactions are out-of-distribution, we train OneClassSVM
outlier detectors using 20000 labeled transactions sampled
from the training set of each scenario and perform detection
on the suspicious transactions. Results show that 44.0% of
suspicious transactions in the account takeover scenario are
outliers, and 54.7% of those in the deception fraud scenario are
outliers. This demonstrates our claim that suspicious samples
follow a distribution different from the target distribution.
Metrics. We evaluate the detection performance using AUC,
which is widely used in previous work since fraud transactions
only comprise a very small proportion of all transactions. To
evaluate whether fraud transactions are accurately detected
without compromising legitimate users’ experiences, we also
report the recall at a false positive rate of x (i.e., Re-
call@FPR=x%). Specifically, the false positive rate—the ratio
between the number of benign transactions wrongly classified
as fraud and the total number of benign transactions—is fixed
at several low rates x ∈ [0.01, 0.1, 0.5, 1, 2, 5, 10]. We report
the average scores of each metric after a 5-time repeat with
the standard deviation.
Baselines. To demonstrate that our method successfully uti-
lizes the suspicious samples to enhance the fraud detection

performance, we compare our method with the methods be-
low, which do not utilize the suspicious samples or utilize
them without fully considering the special characteristics of
suspicious samples:
• MLP. This model is only trained using labeled samples.

Therefore, it does not utilize suspicious samples.
• SasF. This model is trained with the suspicious samples by

treating the suspicious samples as fraud samples to alleviate
the issue of insufficient fraud samples.

• SasB. This model is trained with the suspicious samples by
treating them as benign samples.

• ED. This baseline treats suspicious samples as benign or
fraud samples according to their Euclidean distances to
benign and fraud samples. Specifically, for each sample, we
compute its distance to the mean of features of benign and
fraud samples, respectively. The sample is labeled as fraud
if its distance to the mean of fraud samples is smaller, and
vice versa.

Configurations and hyper-parameters. We implement all
algorithms using the PyTorch framework. We choose to use
an MLP model with 3 hidden layers as our base model, and
the hidden dimension of each layer is 128. We interpolate
the feature maps of the first hidden layer. All the models
are trained with the Adam optimizer under a learning rate
of 2 × 10−4 and a weight decay of 1 × 10−6. Without
further notification, we set the hyper-parameter α of the beta
distribution in data augmentation to 0.2, the k of LPL to 2,
and the balance coefficient ϵ of the loss function to 0.5.
Ethical Considerations. The data we use is preprocessed as
tabular data with no sensitive user information. We access all
datasets that are stored on the company’s devices through an
internship program. To mitigate any potential disruption to
the production environment, we conduct experiments in an
isolated environment.

B. Effectiveness

In this section, we evaluate the effectiveness of GIANTESS
by comparing its detection performance against the baselines.
We implement baselines and our method and evaluate them on
the two datasets. The evaluation results are shown in Table II.

From the evaluation results, we can observe that our method
achieves the best performance on both two datasets. For
example, in the account takeover scenarios, our method im-
proves the AUC by 1.07% and Recall@FPR=1% by 6.27%
compared to MLP which does not leverage the suspicious
samples. In the deception fraud scenario, our method also
improves the performance MLP by 0.46% in AUC and 5.94%
in Recall@FPR=1%, which demonstrates that our method
successfully utilizes the information in suspicious samples
to enhance the detection of fraud transactions. Note that by
treating suspicious samples as fraud samples, the performance
of SasF is consistently worse than that of MLP. This validates
our assumption that suspicious samples exhibit a distinct
pattern from the fraud samples, and directly using them as
fraud samples will harm the detection performance on in-
distribution fraud samples. Meanwhile, the feature distribution
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TABLE II: Fraud detection performance of GIANTESS and baselines

Dataset Method Recall@FPR=x% AUC
0.01 0.1 0.5 1 2 5 10

Account
Takeover

MLP 13.185 ± 0.765 27.261 ± 0.268 42.452 ± 1.431 50.048 ± 1.050 58.439 ± 0.528 69.570 ± 1.036 78.201 ± 0.889 92.431 ± 0.330
SasF 3.025 ± 0.149 11.369 ± 0.379 20.892 ± 0.316 24.713 ± 0.155 28.328 ± 0.508 43.949 ± 2.827 68.742 ± 1.691 88.585 ± 0.628
SasB 10.080 ± 0.641 19.411 ± 1.125 33.025 ± 0.815 41.210 ± 1.920 50.892 ± 2.031 64.793 ± 1.167 75.207 ± 1.474 91.466 ± 0.432
ED 2.245 ± 0.248 8.726 ± 0.249 15.334 ± 0.145 18.455 ± 0.362 32.373 ± 2.485 60.748 ± 1.904 74.029 ± 1.387 90.076 ± 0.567

GIANTESS
14.029 ± 0.572 29.236 ± 0.655 45.621 ± 0.687 53.185 ± 0.386 60.876 ± 0.813 72.643 ± 0.388 81.003 ± 0.670 93.422 ± 0.245

⇑ 6.40% ⇑ 7.24% ⇑ 7.46% ⇑ 6.27% ⇑ 4.17% ⇑ 4.42% ⇑ 3.58% ⇑ 1.07%

Deception
Fraud

MLP 8.865 ± 1.070 28.020 ± 2.523 50.291 ± 2.524 62.445 ± 1.681 73.508 ± 0.982 85.953 ± 0.357 92.547 ± 0.151 96.997 ± 0.107
SasF 3.261 ± 0.581 19.010 ± 1.184 42.678 ± 1.864 56.099 ± 1.217 69.418 ± 0.476 84.003 ± 0.762 91.674 ± 0.473 96.732 ± 0.099
SasB 4.367 ± 0.186 17.278 ± 1.445 38.311 ± 2.420 50.495 ± 1.745 63.799 ± 1.444 79.854 ± 0.788 89.316 ± 0.924 95.990 ± 0.255
ED 4.410 ± 0.351 22.009 ± 0.865 47.322 ± 2.009 59.403 ± 1.229 70.655 ± 0.759 83.464 ± 0.710 91.092 ± 0.823 96.659 ± 0.248

GIANTESS
10.582 ± 0.610 30.189 ± 1.271 54.454 ± 1.001 66.157 ± 1.058 76.259 ± 0.962 88.108 ± 0.623 94.178 ± 0.632 97.450 ± 0.060

⇑ 19.37% ⇑ 7.74% ⇑ 8.28% ⇑ 5.94% ⇑ 3.76% ⇑ 2.51% ⇑ 1.76% ⇑ 0.46%

of suspicious samples is closer to fraud samples than benign
samples, and thus treating them as benign samples introduces
label noises and downgrades the performance of SasB. In
contrast, our method designs a pseudo label generation method
to yield soft labels for unlabeled suspicious samples which can
estimate the risk level of suspicious samples, and further uses
the hybrid label model training method to incorporate the hard
label and soft label to enhance the detection performance for
stealthy fraud transactions.

To gain insight into the detection performance, we ask
for the help of the security experts in our cooperate online
payment platform to perform detailed manual annotation of
the fraud samples that our method successfully detects while
the baseline MLP fails to detect when fixing FPR at 1%. The
annotation is based on the expert experience of typical fraud
events and the communication feedback between the customer
service and the victims. We perform this analysis in the ac-
count takeover scenario, because it is a more difficult scenario
for detection. We fix the FPR at 0.5%, which is a reasonable
threshold in production to avoid excessive false alarms, and
analyze the manual labels of detected false positives at this
threshold. We find that, among all fraud transactions that our
method can detect while MLP fails to, 45.9% are suspected to
be conducted by the relatives of the victims or mistakenly con-
ducted by the victims themselves. Since these transactions are
conducted by people around the victims, they do not exhibit
obvious anomalous characteristics such as device and location
changes. Meanwhile, 29.3% of the extra samples detected
are attributed to typical frauds such as information leakage,
phishing scams or device lost, indicating that our method can
also strengthen the detection performance using suspicious
samples. In conclusion, the performance improvement of our
method is largely due to the successful detection of stealthy
fraud transactions which do not have obvious abnormal fea-
tures. Suspicious samples also support the detection of fraud
transactions whose patterns are close to existing fraud patterns.

C. Ablation Study
To validate the design of our framework, we evaluate the

contribution of the components in our framework on the final
detection performance. We remove different components of

our framework and test the detection performance of the
trained models. The compared methods are as follows:

• MLP. The model is trained with only labeled samples, i.e.,
the fraud and benign transactions. All the suspicious samples
are not used to train this model.

• DA. The model is trained with only labeled samples under
the data augmentation method of our framework, without
utilizing the suspicious transaction samples.

• SS. The model is trained under hybrid label training with
both labeled and suspicious samples, while the data aug-
mentation technique is not used to train the labeling model.

The evaluation results are shown in Table III. It can be
seen that both the data augmentation method in the pseudo
label generation component and the utilization of suspicious
samples by the hybrid model training component contribute to
the detection performance. By combining the two components,
our method can achieve the best fraud detection performance.
Note that, in the deception fraud detection scenario, the AUC
of our method is slightly lower than that of SS by 0.015%, and
similarly the AUC of DA is slightly lower than MLP, which we
believe is because the data augmentation introduces additional
noises by changing the feature map distribution. However,
introducing our data augmentation technique significantly
improves the recall at low FPR rates. For example, in the
deception fraud scenario, the data augmentation component
enhances Recall@FPR=0.5% for 1.86% compared to the
vanilla MLP model. In real-world applications, recall at low
false positive rates is a more important metric because a higher
recall allows the fraud detection framework to interrupt more
stealthy fraud transactions while minimizing the disruption
to normal users. Therefore, the data augmentation component
improves the practical value of our method.

We further dive into the hidden feature space of models to
demonstrate how our method augments the feature space. We
extract the hidden feature maps of transactions generated by
the last hidden layers of the vanilla MLP model (i.e., MLP) and
model trained by our method. Then we visualize the hidden
feature space using the PCA algorithm [14] to reduce the
feature dimension. Figure 5 presents the visualization using
MLP and GIANTESS. It can be seen that the hidden feature
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TABLE III: Performance of the proposed framework and models trained using different components of our framework.

Dataset Method Recall@FPR=x%

0.01 0.1 0.5 1 2 5 10
AUC

MLP 13.185 ± 0.765 27.261 ± 0.268 42.452 ± 1.431 50.048 ± 1.050 58.439 ± 0.528 69.570 ± 1.036 78.201 ± 0.889 92.431 ± 0.330
DA 14.108 ± 0.502 28.455 ± 0.502 43.455 ± 0.946 51.242 ± 1.302 59.825 ± 1.257 71.099 ± 0.964 80.223 ± 1.008 92.950 ± 0.170
SS 13.137 ± 0.347 28.360 ± 0.472 44.522 ± 1.033 52.134 ± 0.358 60.287 ± 0.762 71.608 ± 0.767 80.016 ± 0.766 93.078 ± 0.375Account

Takeover
GIANTESS 14.029 ± 0.572 29.236 ± 0.655 45.621 ± 0.687 53.185 ± 0.386 60.876 ± 0.813 72.643 ± 0.388 81.003 ± 0.670 93.422 ± 0.245

MLP 8.865 ± 1.070 28.020 ± 2.523 50.291 ± 2.524 62.445 ± 1.681 73.508 ± 0.982 85.953 ± 0.357 92.547 ± 0.151 96.997 ± 0.107
DA 8.661 ± 0.870 29.563 ± 0.497 52.154 ± 1.016 62.547 ± 0.265 73.566 ± 0.351 86.084 ± 0.487 92.387 ± 0.359 96.814 ± 0.127
SS 10.044 ± 0.677 29.229 ± 1.016 53.421 ± 1.802 64.876 ± 1.306 75.604 ± 0.910 87.715 ± 0.319 93.945 ± 0.508 97.464 ± 0.037Deception

Fraud
GIANTESS 10.582 ± 0.610 30.189 ± 1.271 54.454 ± 1.001 66.157 ± 1.058 76.259 ± 0.962 88.108 ± 0.623 94.178 ± 0.632 97.450 ± 0.060

(a) MLP (b) Giantess

suspicious fraud benign

Fig. 5: PCA visualization of the hidden feature space of
models.
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Fig. 6: Embedding similarity of models.

maps of suspicious samples and fraud samples extracted by the
vanilla MLP model are heavily entangled with those of benign
samples, which means that the model cannot well separate the
fraud and benign transactions. In contrast, the hidden features
of fraud and suspicious samples generated by our method are
well separated from those of benign samples, demonstrating
that our method successfully enhances the hidden feature space
of the trained model. Besides, we also study the similarity of
hidden feature maps of suspicious samples to those of fraud
and benign samples. We sample 300 suspicious transactions
and calculate their averaged cosine similarity to all fraud and
benign transactions in the hidden feature space and plot the
similarity in Figure 6. It is obvious that our method enlarges
the similarity between the hidden features of suspicious and
fraud samples, which is in line with our assumption that the
suspicious samples are close to fraud transactions.

D. Parameter Sensitivity Analysis

In real-world deployment, careful parameter fine-tuning for
fraud detection models is expensive due to the huge amount
of data and the long training and verification cycle. Therefore,
it is more preferable to have a method that is less sensitive
to the hyper-parameters. We evaluate the performance of our
method under different hyper-parameters, i.e., α for controlling
the sample interpolation coefficient, the fraud importance pa-
rameter k of the loss function, and the loss balance parameter
ϵ. Specifically, we vary the value of α within the range of
[0.1, 0.2, 0.3, 0.4], the value of k in [1, 2, 3] and the value
of ϵ in [0.3, 0.4, 0.5, 0.6, 0.7]. When evaluating each hyper-
parameter, the other hyper-parameters are fixed at their default
values (i.e., λ = 0.2, k = 2, and α = 0.7). For each
setting, we train the model under both account takeover and
deception fraud settings and report the Recall@FPR=[0.5%,
1%, 10%] and the AUC score. Evaluation results are reported
in Figures 7, 8 and 9, respectively.

It can be seen that the model achieves the best performance
when α = 0.2, and the metrics slightly reduce with the in-
crease of α. The performance drop in the account takeover sce-
nario is higher than that in the deception fraud scenario. We be-
lieve this is because the differences between account takeover
fraud samples and benign samples are harder to identify, and
interpolating these samples with an overly high ratio will make
it even more difficult for the model to learn the identification
of the fraud pattern. Nonetheless, there is an obvious improve-
ment in recall at low false positive rates when α = 0.2, which
improves the detection ability of stealthy fraud transactions.

Besides, Figures 8 and 9 show that our framework is not
sensitive to the choosing of fraud importance parameter k
and loss balance parameter ϵ. Note that the pseudo label loss
degenerates to the vanilla KL divergence loss when k = 1.
When increasing k from 2 to 3, the AUC score in the account
takeover scenario slightly increases from 93.4% to 93.5%,
but the Recall@FPR=0.05% decreases from 45.6% to 45.2%.
In application, the recall at low false positive rates is more
important because it reflects the ability of the model to detect
stealthy fraud transactions without disturbing benign users.
Therefore, we still choose to set k = 2.

In conclusion, our method is not sensitive to the choosing
of the fraud importance parameter k and the loss balance
parameter ϵ, and models trained with α = 0.2 can yield a
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Fig. 7: Impact of the sample interpo-
lation hyper-parameter α on the fraud
detection performance.

1 2 3
k

(a) Account Takeover

40

60

80

100

1 2 3
k

(b) Deception Fraud

40

60

80

100

Recall@FPR=0.5%
Recall@FPR=1%

Recall@FPR=10%
AUC

Fig. 8: Impact of the fraud importance
parameter k on the fraud detection per-
formance.
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Fig. 9: Impact of the loss balance pa-
rameter ϵ on the fraud detection perfor-
mance.
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Fig. 10: Detection performance over time in the account
takeover scenario.
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Fig. 11: Detection performance over time in the deception
fraud scenario.

consistently superior performance under different scenarios.

VI. REAL-WORLD DEPLOYMENT

To understand the fraud detection performance of our
method in real-world applications, we deploy our framework
on the platform. The real-world deployment test was con-
ducted under the two scenarios for a total of 9 weeks, starting
from June 25th, 2023. We use the first six days of data to train
the fraud detection model using our framework and take the
seventh day of data as the validation dataset. After training the
model, we evaluate the model in the following eight weeks.

A. Performance

The model performs prediction on tens of millions of trans-
actions each week. Finally, the transactions are labeled based
on the fraud victims’ complaints and manual verification by
customer service. We calculate the evaluation metrics in each
week and plot the metrics of the two scenarios in Figures 10
and 11, respectively.

It can be seen that models in both scenarios maintain
relatively stable performance in the first four weeks. For exam-

TABLE IV: Case studies of detected fraud transactions.

Type Real-world Example

Account takeover due
to device lost.

The user lost the device and then his account is
used to conduct fraud transactions.

Account takeover due
to fraud.

The user is induced to give the password and
verification code when conducting online payment.

Account takeover by
relatives.

The user’s device is operated by one of his relatives
to transfer money to the relative’s account.

ple, in the account takeover scenario, the Recall@FPR=10%
slightly reduces from 79.9% to 77.3%, while the AUC even
increases from 91.5% to 92.6%. After the fourth week, the
detection performance in the account takeover scenario begins
to reduce gradually. However, the detection performance in the
deception fraud scenario is still rather stable. For example, the
Recall@FPR=10% keeps in the range from 87% to 90%, and
the AUC is always around 96.5%. We believe this is because
concept drift occurs over time in the fraud patterns of account
takeover behaviors, while the fraud patterns in the deception
fraud scenario are relatively stable. It is an interesting future
work to explore how to leverage suspicious transactions to
alleviate the concept drift in the account takeover scenario.

B. Case Study

To further understand the effectiveness of our method,
we randomly sample some detected account takeover fraud
transactions and ask for help from the security operators and
customer service of our cooperating platform to investigate
these cases. The feedback obtained from the users related to
detected fraud transactions is analyzed. In the analysis, to
protect user privacy, sensitive user information is not used.
The analysis results are shown in Table IV. It can be seen that
our method successfully detects different categories of account
takeover fraud. Note that account takeover fraud by relatives
is covert because there are no common abnormal patterns,
such as device and IP changes, etc. Therefore, our method
successfully detects stealthy fraud transactions.

VII. RELATED WORK

Fraud Detection. With the popularity of e-commerce and
social networks, fraud detection has been widely studied
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in academia and industry. Existing methods can be divided
into account and transaction levels based on the focused
tasks. Account-level detection methods extract the fraudulent
patterns of accounts based on users’ historical behaviors [9],
[15]–[19]. For example, Ianus [16] extracts synchronization
and anomaly-based features for account pairs to perform
detection. DEC [9] proposes a multi-stage framework
to aggregate the properties and behavioral features from
account graphs into deep features and perform account
classification. In general, these methods focus on discovering
account-level fraud patterns in specific scenarios, while we
aim at designing a general method to leverage unlabeled
suspicious transactions. Transaction-level detection methods
focus on discovering the malicious behaviors of accounts,
which is more fine-grained [3]–[8]. [3] proposes a subgraph
extraction method to extract the anomalous subgraph in the
transaction graph. TTAGN [4] designs a temporal aggregation
graph network to utilize the temporal relationship between
transactions. [5] uses the recurrent neural network to detect
credit card frauds in real time. These methods focus on
specific scenarios and are designed based on the special data
formats in the scenarios. Compared to them, our framework
aims to design a general framework to make use of suspicious
transactions and is orthogonal to these methods.
Semi-supervised Learning with OOD Data. Existing litera-
ture has studied utilizing unlabeled out-of-distribution data to
improve the in-distribution performance [20]–[23]. OAT [20]
assumes that OOD data share the same undesirable features
as the in-distribution data, and assigns labels sampled from
the uniform distribution to OOD data to reduce the impact
of those undesirable features. Open-sampling [21] assigns
randomly sampled labels for OOD data based on class priors
to alleviate the long-tailed class distribution in the multi-class
classification task. COLT [22] designs a contrastive learning-
based framework that leverages the OOD data to alleviate
the long-tailed learning problem. These methods are based on
different assumptions from our framework, e.g., the OOD data
belong to classes that do not exist in the in-distribution data
or the task performs multi-class classification. Therefore, they
cannot be applied to our scenario.

VIII. CONCLUSION

In this paper, we propose a novel framework, GIANTESS,
to enhance the detection of stealthy fraud transactions by
leveraging unlabeled suspicious records. We develop methods
to combine suspicious transactions with labeled transactions
to augment the feature space. We conduct experiments on two
real-world datasets and real-world deployment to demonstrate
its effectiveness for unveiling stealthy frauds that closely
mimic benign user behaviors.
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