
PRED: Performance-oriented Random Early Detection for Consistently Stable
Performance in Datacenters

Xinle Du† Tong Li‡,∗ Guangmeng Zhou§ Zhuotao Liu§ Hanlin Huang§

Xiangyu Gao§ Mowei Wang† Kun Tan† Ke Xu§,∗

†Huawei Technologies ‡Renmin University of China §Tsinghua University

Abstract
Random Early Detection (RED) has been integrated into

datacenter switches as a fundamental Active Queue Manage-
ment (AQM) for decades. Accurate configuration of RED
parameters is crucial in achieving high throughput and low
latency. However, due to the highly dynamic nature of work-
loads in datacenter networks, maintaining consistently high
performance with statically configured RED thresholds poses
a challenge. Prior art applies reinforcement learning to pre-
dict proper thresholds, but their real-world deployment has
been hindered by poor tail performance caused by instabil-
ity. In this paper, we propose PRED, a novel system that
enables automatic and stable RED parameter adjustment in
response to traffic dynamics. PRED uses two loosely coupled
systems, Flow Concurrent Stabilizer (FCS) and Queue Length
Adjuster (QLA), to overcome the challenges of dynamically
setting RED parameters to adapt to the ever-changing traffic
pattern. We perform extensive evaluations on our physical
testbed and large-scale simulations. The results demonstrate
that PRED can keep up with the real-time network dynam-
ics generated by realistic workloads. For instance, compared
with the static-threshold-based methods, PRED keeps 66%
lower switch queue length and obtains up to 80% lower Flow
Completion Time (FCT). Compared with the state-of-the-art
learning-based method, PRED reduces the tail FCT by 34%.

1 Introduction
Datacenters host a variety of services with distinct network-
ing preferences. For example, storage [1] and data mining [2]
require high throughput, while web search [3] and machine
learning [4] services require low latency. To meet these ap-
plication requirements, a lot of innovative congestion con-
trol algorithms (e.g., DCTCP [3], DCQCN [5], TIMELY [6],
HPCC [7], Swift [8], BFC [9]) have been proposed to reduce
the delay caused by in-network queuing.

These new congestion controls demonstrate tremendous
improvements; however, deployment is a challenging issue.

∗Tong Li and Ke Xu are the corresponding authors.

For instance, it takes Google a year to release a new kernel
to support new network functions [8, 10]. Many congestion
controls need to be deployed on hardware Network Interface
Cards (NICs) (e.g., HPCC [7]) or require new switches to
support them (e.g., BFC [9]), which cannot be deployed in
heterogeneous datacenters made up of legacy devices [11].
In some particular scenarios, such as multi-tenant datacenter
networks, it is also difficult to modify the network protocol
stack at the end host [12, 13].

To compensate for the host-based new congestion control
protocols, the community also explores more accurate in-
network congestion signals [14–17]. For instance, Explicit
Congestion Notification (ECN) [18] is widely deployed in dat-
acenter networks as the new congestion signal besides packet
losses. Random Early Detection (RED) [19], the algorithm
that controls how to discard packets or how to mark packets
for ECN, has also been integrated into switches as a basic Ac-
tive Queue Management (AQM) function. Many production
datacenter transport protocols rely on ECN and RED [20–22],
such as DCTCP and DCQCN.

Broadly speaking, the prior work on addressing
RED/ECN’s shortcomings can be classified as either
new AQMs (e.g., TCD [14]), case-based RED/ECN (e.g.,
ECNsharp [15], BCC [16]), or learning-based RED/ECN
(e.g., ACC [17]). The new AQM relies on a new switch
design, thus requiring a long product release cycle [17].
The case-based arts (e.g., ECNsharp, BCC) realize that
RED/ECN with a fixed threshold is ineffective in datacenters
and therefore propose to consider multiple cases during
threshold adjustment. However, they only recognize a limited
number of cases and still use fixed thresholds for each case
(see details in § 6.3.2). Prediction model-based ACC [17]
leverages the deep reinforcement learning (DRL) [23] to
adjust the RED settings dynamically in reaction to network
congestion. However, it might make the adjustment of the
RED unstable, resulting in sharp changes in queue length and
poor tail performance (see details in § 6.3.3).

Thus from a philosophical standpoint, it is worth asking:
Why can’t static RED adapt to dynamic traffic? Can the prob-

New Congestion Control
(e.g., HPCC[7], Swift[8], BFC[9])

Hard to deploy, needs new
kernel/NIC/switch

Better Congestion Signal
No host modifications

Case-based
(e.g., ECNsharp[15], BCC[16])

Limited cases, not adaptive

New AQM(e.g., TCD[14])
Hard to deploy, needs new switch design

Adjust RED Parameter
Widely used, commercial verification

Prediction model
(e.g., ACC[17])

Unstable, poor tail performance

Explicit modeling & A/B testing
(PRED)

Stable, consistent high performance

Model-based
Adjustment based on traffic, adaptive

Figure 1: Design space in Datacenters.
lem be solved simply by dynamically adjusting the threshold
of the already widely used RED without modifying the algo-
rithm itself? Is there a stable way to adjust the RED threshold?
In this paper, we seek to answer these questions with a new
scheme PRED (Performance-oriented RED).

Figure 1 surveys the design space for congestion control
and places PRED in context by following the thick red lines
through the design tree. At the highest level, PRED is an AQM
implemented on the switches to provide a better congestion
signal. Next, instead of designing a new AQM that needs
an entirely new switch design, PRED dynamically adjusts
the parameters of the widely commercially proven RED in
datacenters. As shown in the lowest branch of the design tree,
PRED falls into the category of explicit modeling and A/B
testing approach that is more adaptive and stable.

Through experiments, we have discovered that the perfor-
mance of RED is mainly influenced by the concurrency and
distribution of traffic. Prediction model-based ACC [17] ini-
tially employed a traffic-aware approach to proactively adjust
the RED threshold; However, it failed to provide stable ad-
justment due to two reasons: the impact of rapid changes
in concurrent flow numbers and inaccurate predictions.
Different concurrency levels require different settings, but
because there is a mismatch between the delay of DRL and
the delay of estimating concurrency, ACC cannot make adjust-
ments based on concurrency levels. Moreover, due to inherent
error rates in machine learning predictions, the design princi-
ple of ACC fails to achieve consistently stable performance.

PRED employs two loosely coupled systems, namely the
Flow Concurrent Stabilizer (FCS) and Queue Length Adjuster
(QLA), to address the difficulties associated with unstable ad-
justments in dynamically adjusting RED parameters. In order
to keep the queue length stable under different concurrency
levels, FCS uses modeling to adjust RED parameters by count-
ing the number of concurrent flows on a switch port. In order
to achieve stable real-time adjustment of the queue length to
accommodate varying traffic, QLA employs a step-by-step
approach, utilizing testing and verification methods, to gradu-
ally modify the RED parameters. With FCS and QLA, PRED
can achieve consistently high performance under dynamic
traffic in a more stable way without modifying the RED logic.

p

q

minK maxK
0

1
maxP

(a) Two-point form (b) Point-slope form

Slope 𝝀 =
maxP

maxK −minK

p

q

minK
0

1

maxP’

maxK’

Figure 2: Two Forms of RED parameter configuration.
We implement a prototype of PRED using the barefoot

Tofino switch [24] as the programmable data plane and eval-
uate PRED extensively using various use cases. Our testbed
experiments show that PRED can keep queues stable under
various flow-concurrent conditions. Based on real network
workloads, we demonstrate that PRED can properly adjust the
RED parameters to a more workload-friendly state to keep up
with the traffic dynamics.

We further perform larger-scale simulations to evaluate
PRED. Our quantitative results confirm that PRED advances
state-of-the-art in various aspects. For example, compared
with the algorithms with static thresholds, PRED can achieve
up to 80% lower Flow Completion Time (FCT) for short
flows. From the microscopic view of switch queues, PRED
effectively mitigates queue buildups by keeping the switch
queue length 66% lower than that of the static threshold al-
gorithms (from 25 to 15 packets). We further demonstrate
that PRED reduces the 99th FCT by 34% compared to ACC,
the state-of-the-art DRL-based RED configuration approach,
whose uncertainty results in suboptimal parameter selections
in extreme cases.

The rest of the paper is organized as follows. We introduce
the background in § 2 and the motivation of the PRED in § 3.
§ 4 illustrates the design of our solution. In § 5, we address
the implementation of PRED on P4 [25]. In § 6, we evaluate
PRED in NS-3 [26] and a small-scale testbed. § 7 surveys the
related work. Finally, § 8 concludes this paper.

2 Background
2.1 The Form of RED Setting: Two-point

Turns to Point-slope
RED [19] is the most widely applied AQM scheme and is
commonly supported by commodity switches. 1 The state-of-
the-art congestion control mechanisms have widely adopted
RED in datacenter networks. For example, DCTCP [3] and
DCQCN [5] adopt RED with the standard ECN on switches
and use the marked-packet-aware rate control on end hosts.
First of all, to facilitate the design of PRED in this paper, we
revisit the RED parameter configuration by explaining why
we replace the two-point form with the point-slope form.

Two-Point Form. RED works on switches and makes deci-
sions about marking packets based on the output queue length

1We note that if not otherwise specified, RED adopts packet marking
ECN instead of packet discarding in this paper.

5 10 15 20
Concurrent Flows (N)

8.0

8.5

9.0

9.5

Th
ro

ug
hp

ut
 (G

bp
s)

ECN
RED(λ=0.65)
RED(λ=1.65)

5 10 15 20
Concurrent Flows (N)

50

100

150

200

Qu
eu

e
Le

ng
th

 (K
B)

(a) Testbed Result

0 5 10 15 20
Time (ms) N=2

0

100

200

Qu
eu

e
Le

ng
th

 (K
B)

ECN
RED(λ=0.65)
RED(λ=1.65)

0 5 10 15 20
Time (ms) N=20

0

100

200

(b) Simulation Breakdown

Figure 3: RED performance with different flow concurrency levels (N).
(denoted by q). The decision-making is driven by three param-
eters, including the maximum marking probability (maxP),
and two queue thresholds (minK and maxK). When the queue
length is lower than minK, no action is taken. When the queue
length exceeds maxK, every arrived packet is marked. When
the queue length is between minK and maxK, RED calculates a
probability p that the packet should be marked. In production
networks, linear interpolation is the common practice to cal-
culate p as p = maxP · q−minK

maxK−minK . As plotted in Figure 2(a),
the resulting curve of p is in the two-point form: point (minK,
0) and point (maxK, maxP).

Point-Slope Form. In this paper, we argue that applying the
equivalent point-slope form makes the design of the RED
parameter configuration more interpretable (see §2.2). As
shown in Figure 2(b), we define λ (λ ∈ (0,+∞)) as the slope
of the line. λ is computed as λ = maxP

maxK−minK , and thus we have
p = λ · (q−minK). For example, given minK = 0.005 MB,
maxK = 0.2 MB, maxP = 0.1, we have λ≈ 0.5.

2.2 The Essence of RED Setting: Controlling
the Steady-state Queue Length

RED is a tool for congestion control convergence, so adjust-
ing the RED threshold is essentially adjusting the steady-state
queue length as it converges. To explain why we replace the
two-point form with the point-slope form and the essence of
the RED setup, we first take DCTCP as an example of the
RED parameter breakdown based on a fluid model [3,5]. Con-
sidering N long-lived flows traversing a single bottleneck link
with capacity C and propagation delay d (RTT without queue-
ing), the relationship between the steady-state queue length
(denoted by q̇) and the RED setting is derived as follows2 (see
Appendix A for detailed derivations):

(q̇−minK)2(q̇+Cd) =
2N

(maxP
maxK−minK)

2
=

2N
λ2 (1)

λ can monotonically influence q̇: The first thing we infer
from Equation (1) is that λ can monotonically influence q̇.
This reveals that the point-slope form expresses a more clear
physical meaning than the two-point one. If we adjust minK,
maxK and maxP, different settings may lead to the same result,

2Similar conclusions are reached by other ECN-based congestion controls,
as demonstrated in studies [27]. Additional sources, including DCQCN and
TCP [27, 28], also uphold consistent conclusions. For brevity, we skip the
detailed discussion. The assumption of N long-lived flows is for simplicity
in understanding the congestion model, but it is not a strict requirement.

for example, (minK,maxK,maxP) and (minK,maxK’,maxP’)
in Figure 2(a). It is easier for the operator to adjust the pa-
rameters if there is only one variable and the linear adjust-
ment will result in a linear result. Therefore, the point-slope
is better than the two-point because the monotone change
in the λ in the two-point form results in a linear change in
the steady-state q̇. In the latter, we use (minK,λ) to replace
(minK,maxK,maxP).
Key factors affecting the q̇: From Equation (1), we can see
that the steady-state q̇ is only related to three key factors. (a)
The network-specific factor, including the bottleneck link C
and propagation delay d. Once the network topology is built,
this factor will be fixed. (b) The flow concurrency level N.
The larger N is, the larger q̇ is. If the network experiences
drastically changing N, the steady-state q̇ will change accord-
ingly. 3 (c) The setting of RED parameters (the only one
that the network operator typically controls), i.e., λ and minK.
By setting the RED parameters, we can properly adjust the
steady-state queue length.

3 Motivation
3.1 RED Requires Traffic Awareness
We define the flow concurrency level on a switch as the num-
ber of flows whose packets are buffered in the switch’s output
queue at a certain time, define the flow distribution as the
distribution of flow sizes and define steady-state queue length
(denoted by q̇) as the average queue length of the switch
output queue at the stable state. Based on the measurement
studies on datacenter network workloads with varying flow
concurrency levels and flow distributions, we observe two
interesting observations in RED parameter configurations.

Observation 1 (Flow Concurrency): Steady-state queue
length grows with the number of flows. From Equation (1)
in § 2, we conclude that the larger N is, the larger q̇ is. In this
section, we also verify this observation through experiments.
In these experiments, we run many-to-one (incast) tests with
different flow concurrency levels through both testbed eval-
uation and NS-3 simulation (see setup details in § 6). ECN
acts as the baseline, which represents the legacy way of mark-
ing packets using a single threshold [3], i.e., minK = maxK.
RED (λ = 1.65) represents a more aggressive RED parame-
ter setting with higher ECN marking probabilities, and RED

3The RED capacity of queue adjustment is limited. When N becomes too
large, Equation (1) becomes ineffective. The detailed discussion is in § 4.3.

35pt
: R153 G0 B0

:
LT Medium

: Arial

32pt
: R153 G0 B0

黑体

22pt
) :18pt
黑色

:
LT Regular

: Arial

20pt
):18pt
黑色

细黑体

ECN RED(.95)RED(2.4)RED(4.8) RED(48)
Di e)ent Settings

1.0

1.5

99
th

 N
()

m
al

i-e
d

FC
T

(<
=

10
0K

B)

w()kl(ad1(3KB-6KB)
w()kl(ad2(30KB-600KB)

� ��� ���
���������

�

���

���

	��

��
��

��
��
�

��
�� ��������

��������

(a) FCT (b) Queue length

Figure 4: RED performance with different workloads.

(λ = 0.65) represents a more conservative RED.
Figure 3(a) shows the testbed results of total throughput

and queue length on the switch. Through experiments, we
again verify that the queue length of both RED increases with
the increase of N as shown in Figure 3(a). This conclusion
holds even in the case of multiple bottlenecks, where several
hops before the last hop are also congested (see § 6). Data-
center network traffic can be very bursty, but the static RED
algorithm increases q̇ as the flow concurrency level increases.
The tail FCT of short flows will increase with the increase of
concurrency, which seriously affects the application perfor-
mance. A large number of concurrent flows can also suffer
from the TCP incast throughput collapse because the queue
length is not bounded at the bottleneck switch. A high queue
length may trigger back pressure mechanisms (e.g., ECN in
DCTCP and priority-based flow control (PFC) in DCQCN)
that restrain pushing more packets into the network.

We can also find that different concurrency levels require
different λ. RED (λ = 1.65) suffers from under-bandwidth
utilization when the flow concurrency level is low, and RED
(λ = 0.65) suffers from high queuing delay (queue length)
when the flow concurrency level is high. We further zoom
into the run-time queue length via simulations for the case of
N = 2 and N = 20. As shown in Figure 3(b), a larger λ (e.g.,
λ = 1.65) achieves better performance (i.e., high bandwidth
and low latency) when the concurrency level is large (e.g.,
N = 20), and vice versa. Although ECN achieves acceptable
bandwidth utilization and overall low latency, its amplitude of
the steady-state queue length increases with the flow concur-
rency level. This indicates that applying the single threshold
is insufficient to achieve consistent low latency. To sum up,
static RED is not suitable for dynamic flow concurrency.

Observation 2 (Flow Distribution): Small flows require a
large steady-state queue length, while large flows require
a small steady-state queue length. In this experiment, we
examine RED performance given different flow distributions.
We created two different workloads to represent pure small
flows and large flows: workload 1 has a flow distribution of
size from 3 KB to 6 KB, and workload 2 has a flow distri-
bution of size from 30 KB to 600 KB. In the many-to-one
scenario, the number of concurrent senders is fixed at 18 (see
setup details in § 6). Figure 4(a) plots the normalized 99th-
percentile FCT of flows. The x-axis denotes different settings
of λ. It is clear that under workload 1, FCT increases with λ,
while under workload 2, FCT decreases with λ. This shows

35pt
: R153 G0 B0

:
LT Medium

: Arial

32pt
: R153 G0 B0

黑体

22pt
) :18pt
黑色

:
LT Regular

: Arial

20pt
):18pt
黑色

细黑体

Switch
ECN ModulePacket Buffer

ACC

State
Qlength, txRate
ECNmarkRate

minK, maxK, maxP

Action
minK
maxK
maxP

Reward
(1 − 𝛼)txRate + 𝛼(−Qlength)

Queue Length
Adjuster (QLA)

Input: Qlength, txRate
A/B test

Output: 𝜆!"#

Flow Concurrent
Stabilizer (FCS)
Input: Five-tuple

Count Flow
Output:𝑓(𝑁)

PRED

ACC

Qlength

Time

Optimal
Qlength

Unstable

Qlength

Time

Optimal
Qlength

Stable

Switch
ECN ModulePacket Buffer

Figure 5: The design comparison of ACC and PRED.
that the proper RED parameter configuration highly depends
on the flow distributions in the workload.

For flow distribution such as workload 1, where small flows
are dominant, the bottleneck queue is only occupied for a
short time. The changes in queue length are spikes one by
one in Figure 4(b). Link utilization is not full all the time.
Therefore, in this case, increasing the ECN marking proba-
bility (increasing λ) will further reduce the link utilization,
resulting in a larger FCT of the small flows. To achieve low
FCT, the steady-state queue length is expected to be large
enough (decrease λ) to avoid triggering packet marking at the
bottleneck switch. On the other hand, for flow distribution
such as workload 2, where larger flows are dominant, the high
link utilization and high bottleneck queue occupancy will last
for a long period. This queue occupancy is unnecessary and
significantly impacts the latency of small flows. Thus, the
steady-state queue length is expected to be small enough to
achieve low FCT performance. In conclusion, static RED is
also unsuitable for dynamic flow distribution.

3.2 Our Goals: Traffic Awareness and Stability
Since the influence of flow concurrency and flow distribution
makes the static RED unsuitable for dynamic flows, a natural
question is: Can we make the RED parameters configuration
traffic-aware? ACC [17] and PRED share a common high-
level approach of dynamically adjusting RED parameters. In
the following sections, we will highlight the limitations of
ACC and explain how PRED overcomes these limitations by
achieving stable queue length adjustments.
Limitations of ACC. ACC was the first to use deep reinforce-
ment learning (DRL) to adjust RED parameters to make RED
traffic-aware. As shown in Figure 5, ACC takes the following
four features as the input state: The current queuing length, the
output data rate for each link, the output rate of ECN marked
packets for each link, and the current ECN setting. The output
action is the next ECN setting. Then, high throughput and
short queues are used as reward functions to continuously
train the neural network to learn historical data, so as to make

Flow Concurrent
Stabilizer (FCS)

Queue Length
Adjuster (QLA)

𝜆 = 𝑓 𝑁 	× 𝜆!"#

p

q
minK

0

1
𝜆!

= 𝑓(𝑁)𝜆" 𝜆"

p

q
minK

0

1 𝜆!

MIMD AIAD

𝜆#
= 𝜆! ± ∆𝜆

Figure 6: The design rationale of PRED.
predictions for future scenarios. DRL is a valuable approach
for adapting to dynamic environments. However, as discussed
in § 6.3.3, ACC tends to induce high instability in the queue,
resulting in prolonged tail FCT and substantial degradation
of the overall user experience.

There are two reasons for the instability of ACC adjust-
ment: (a) The impact of rapid changes in concurrent flow
numbers: ACC struggles to promptly adjust to varying con-
currency levels because of the swift fluctuations in N, result-
ing in instability. Given that the delay in DRL falls within
the millisecond range, while the calculation of concurrency
level N operates at the microsecond scale, achieving real-time
matching of N is infeasible. Even if ACC can match N in
real-time, it also has the following problem. (b) Inaccurate
predictions: ACC operates on a prediction model derived
from observed and learned historical data to make decisions.
However, incorporating additional network conditions does
not ensure accurate predictions matching 100% real-world
scenarios. Predictions inherently carry an error rate, and when
an inaccurate prediction is made, the network’s performance
becomes unstable, ultimately leading to a degradation in tail
FCT. Next, we will explain how PRED can be stabilized
through the following two problems.
How to bound queue according to flow concurrency? Our
answer is to count N directly in the switch and adjust the
RED λ according to the flow concurrency. In Equation (1),
we analyzed the relationship between q̇ and N and λ. The
left-hand term (q̇−minK)2(q̇+Cd) of Equation (1) contains
the steady-state queue q̇, and if we want q̇ to remain constant,
then the right-hand term 2N

λ2 of Equation (1) needs to remain
constant. N changes dynamically, but if the switch can cal-
culate the current value of N and then increase/decrease the
corresponding λ, then the steady-state queue length q̇ will
not change with N. We design the Flow Concurrent Stabilizer
(FCS) to count the N and change the λ to the concurrency
level. As shown in Figure 5, the input to the FCS is a five-tuple
of each packet. It outputs the multiplier factor of the change
in the RED parameter by calculating the number of flows
over a period of time. In Figure 6, FCS works in the form
of Multiplicative-Increase Multiplicative-Decrease (MIMD)
because it can calculate the corresponding λ directly from N.
How can queue length adjustment be traffic-aware in a
stable manner? Our answer to this question is that we test
and then verify in small steps. The traffic is uneven and time-

Queue Length Adjuster (QLA)

Flow Concurrent Stabilizer (FCS)

Switch

Packet Buffer

① Utility Function ② Decision Maker

① Flow Counter ② Flow Estimator ③ 𝑓 𝑁

RED: 𝜆 = 𝑓 𝑁 	× 𝜆!"# RED: minK

③minK Adjuster

FCS Steps:
① Step 1: Flow Counter computes flow number (denoted by n) and resets n
= 0 at the beginning of each period 𝑇$%&.
② Step 2: Flow Estimator outputs the updated N according to the counted n.
③ Step 3: FCS updates 𝜆 by multiplying by 𝑓 𝑁 in MIMD.
QLA Steps:
① Step 1: Utility Function calculates utility values based on the goodput
(denoted by R) and queue length (denoted by q) in each period 𝑇!"#.
② Step 2: Decision Macker uses the A/B test and two controlled trials (TCTs)
to adjust 𝜆 in AIAD.
③ Step 3: When 𝜆 approximates 0, QLA adjusts minK in AIAD.

Figure 7: The design of PRED.
varying in datacenters. In order to achieve stable high perfor-
mance, some workloads demand a smaller steady-state queue
length to operate at the optimized point [29], while others
demand a larger steady-state queue length to avoid inefficient
link utilization. It is difficult for the switch to know the needed
steady-state queue length. But the switch knows the queue
length and throughput. If the switch can always maintain a
high throughput and a low queue length, this queue length
must be close to the needed steady-state queue length. We
design the Queue Length Adjuster (QLA) to achieve traffic
awareness at run time. In Figure 5, QLA takes throughput
and queue length as input and outputs a corresponding lin-
ear factor λQLA through the A/B test. First, it sets a utility
function in terms of goodput and queue length to judge the
performance of the current RED setting. And then, as shown
in Figure 6, it applies a direct small modification to λQLA
to adapt λ to the traffic. To reduce the impact of noise, it
is tested twice and adjusted only when the results are con-
sistent. Note that any measurement behavior will affect the
network performance itself, so the detection step of FCS
should be small. Using any of the more aggressive detec-
tion algorithms here leads to instability in the network, such
as Additive-Increase Multiplicative-Decrease (AIMD), binary
search, and prediction-based machine learning algorithms.
The QLA works in the form of Additive-Increase Additive-
Decrease (AIAD) because it needs stable but fast convergence.
AIAD is a heuristic process that relies on A/B testing. Unlike
other methods, it demonstrates a clear convergence direction
with incremental testing steps. However, it tends to operate
at a slower pace compared to other algorithms, which may
prioritize speed over stability.

4 Design
In this paper, we propose PRED to answer the question of
how to set RED settings dynamically. Figure 7 illustrates the
design of PRED, primarily focused on adjusting λ to main-
tain an optimized q̇. The FCS determines N using the flow
counter and flow estimator. Subsequently, it applies f (N),
a monotonically increasing function of N, to dynamically

(a) Flow Counter (b) Flow Estimator

Bitmap

n++

Flow
CounterIs it a new

flow? Yes

Time

Flow
Counter

Ground
Truth

Flow
Estimator

𝑇!"#

01 012 0123 012

21 3

01 112 2223 333 222

012

2

𝑇$ 𝑇% 𝑇& 𝑇' 𝑇(

Figure 8: Examples of how the modules work in FCS.

adjust λ according to the concurrency level. The QLA di-
rectly modifies λQLA to achieve traffic-awareness at runtime.
In the following sections, we will delve into each module,
covering topics such as N estimation, utility function design,
noise reduction through two controlled trials, and dynamic
adjustments of minK.

4.1 Flow Concurrent Stabilizer
As shown in Figure 7, the FCS comprises three modules:
Flow Counter, Flow Estimator and f (N). (1) Within each
TFCS period, the Flow Counter computes the number of flows
(denoted by n) traversing a port and resets n= 0 at the period’s
onset. (2) Simultaneously, the Flow Estimator calculates the
updated value of N based on the accumulated n. (3) Subse-
quently, the FCS module adjusts λ by multiplying it with
f (N). In the following, we explain how the Flow Counter and
Flow Estimator work and discuss the selections of f (N).

Flow Counter (to count new flows). A flow can be identi-
fied by the hash of the five-tuple: <source_ip, destination_ip,
source_port, destination_port, protocol>. We define the start
of the flow as the first time a packet with a particular five-
tuple appears at a switch and count the number of flows that
send a packet within each timeout-sized interval TFCS. This
new-arrival count way helps to avoid biases in cases when the
start of flows or the end of flows are missed [30]. The logic is
straightforward, as in Figure 8(a), the Flow Counter checks if
it is a new flow arrival by looking up the bitmap maintained
for each port. If yes, the flow counter increases n by 1. For
every period of TFCS, bitmap and n are reset and recalculated.

Flow Estimator (to estimates N). Flow Estimator estimates
N by taking into account both the last-period n (denoted by
nlast) and this-period n output by the Flow Counter, which
is N = max{nlast ,n}. Since Flow Counter always starts at
0, we can’t treat n as the current N. Figure 8(b) shows an
example. ‘Ground Truth’ represents the actual value of flow
concurrency at the present moment. At T2, the Flow Counter
outputs n = 0, while the last-period estimate nlast = 1. If FCS
uses n instead of N, FCS will get a bad flow estimate of 0. In
this paper, we estimate N at T2 as N = max{n,nlast} = 1.

Selection of f (N). In order to bound the steady-state queue
length regardless of flow concurrency, according to Equa-
tion (1), f (N) should meet f (N)≥

√
N. Through experiments,

we find that using f (N) =
√

N cannot completely bound the
length of the steady-state queue because Equation (1) as-

Switch
State

1

R

q

Utility
Function

𝑈!

YES

NO

PRED
Setting 1
(e.g., 𝜆!)

PRED
Setting 2
(e.g., 𝜆")

Switch
State

2

Utility
Function

𝑈"

𝑈!
𝑈"

Apply
Setting 1

(e.g., 𝜆 = 𝜆!)

Apply
Setting 2

(e.g., 𝜆 = 𝜆")

R

q

>

Figure 9: The closed-loop decision-making of QLA.

sumes N synchronous traffic, which is difficult to meet when
N becomes large. We test with the choice of f (N) through
experiments and choose f (N) = N. We have further given the
reason why N is feasible in § 6.
4.2 Queue Length Adjuster
As shown in Figure 7, the QLA comprises three modules:
Utility Function, Decision Maker and minK Adjuster. (1) The
Utility Function calculates utility values based on the goodput
(denoted by R) and the average queue length (denoted by q̄)
within each period TQLA. (2) The Decision Macker employs
the A/B testing and two controlled trials (TCTs) to adjust
PRED in AIAD. (3) If deemed necessary (e.g., when λ ap-
proaches 0), it further adjusts minK using a similar approach.

The QLA module applies a closed-loop decision-making
structure to set λ according to the demand of the traffic pat-
tern. The efficiency of this performance-oriented learning
approach is also validated in prior works (e.g., PCC [31–33]).
As illustrated in Figure 9, the control action of QLA is its
choice of PRED setting. The decision-making is based on
the A/B testing of two actions, e.g., λ = λ1 and λ = λ2.These
performance metrics are combined with the numerical utility
values, say U1 and U2, respectively, via the utility function.
The decision-making of λ is then based on comparing U1 and
U2. However, the dynamic nature of the network can produce
a lot of noise, which leads to inaccurate results in the A/B
testing. To reduce the impact of noise, TCTs and adjusts only
when the results are consistent.

Utility Function (to decide trade-offs). From the network
operator’s point of view, we usually select the critical network
performance metrics of latency and throughput as the reward
function [17]. We define the utility function as a trade-off
between latency and throughput (i.e., the trade-off between
high utilization and low queue):

U(λt) = β× Rt
C +(1−β)×Φ(q̄t)

R represents the average throughput of one egress queue,
i.e., the amount of data delivered to the link during the time
interval TQLA. We normalize the R by the link bandwidth C to
represent the link utilization. The latency is represented by the
average queue length q̄ to indicate the impact of queuing delay.
β is a weight factor. We select the average value instead of the
instantaneous queue length because the instant queue length
varies in a large range, which can make utility unstable. Φ()
is a mapping function as shown in Figure 10(a). Generally,
the lower the queue length, the better. Note that when the

Φ(𝑞)

q

qright0

1

qleft
(a) Mapping function of queue

length (b) Two controlled trials

Time

Utility

𝑇!"#

222

𝑇$ 𝑇% 𝑇& 𝑇' 𝑇(

Action +Δ𝜆 +Δ𝜆-Δ𝜆 -Δ𝜆

U1 U4U2 U3

n𝑒𝑤
𝜆

U1>U2
U4>U3

Figure 10: Design details of QLA.
queue goes short (e.g., q̄ ≤ qle f t), the marginal benefit of
further reducing the queue length goes to zero. This avoids
the situation where the utility function becomes unstable
when the queue is too short.

Decision Maker (to reduce noise impact). A simple A/B test
will be disturbed by network noise. To decide which direction
and amount to change its value, QLA uses TCTs to reduce
the noise impact. Assume QLA is currently at setting λQLA.
As shown in Figure 10(b), QLA takes four consecutive TQLA
and divides them into two pairs. For each pair, QLA attempts
a slightly higher λQLA +∆λ and slightly lower λQLA−∆λ,
each for one TQLA. After the four consecutive trials, QLA
needs to judge the next adjustment based on the four utility
values (Ui, i = 1,2,3,4) obtained four times. If the higher
λQLA consistently has higher utility (U1 >U2 and U4 >U3),
then FCS adjusts its λQLA to newλQLA = λQLA +∆λ; and if
the lower λQLA consistently has higher utility then QLA picks
newλQLA = λQLA−∆λ; But, if the results are inconclusive,
e.g., U1 >U2 but U4 <U3, QLA stays at its current λQLA.

Adjustment of minK. Besides λ, the other important value
in the RED parameter is minK. The initial value of minK
can be set very small so that λ can make the steady-state
queue adjusted over a wide range ([minK,+∞)) theoretically.
However, in the design, we cannot use λ = 0 to get a large
steady-state queue q̇ because the FCS module fails. So when
λ < λmin, QLA no longer adjusts λ and adjusts minK instead.
Let minK change ∆minK each time and λ always stays λmin
for FCS. For example, in § 3.1, workload 1’s burst flow does
not occupy the buffer. In this case, minK should be bigger, and
the steady-state queue q̇ is further increased to avoid the burst
being marked with ECN.

4.3 Discussion
Some notable design details of PRED are essential for rea-
soning about the differences from legacy RED. We briefly
discuss these considerations below.
Range of PRED adjustment capabilities. The RED parame-
ter adjustment has limitations, particularly when N surpasses
a certain value. Through experiments, we test the adjustment
range of PRED and observe that when the number of con-
current long flow N exceeds 32, PRED is unable to maintain
queue stability (see Appendix D.6). Fortunately, the occur-
rence of concurrent long flows is rare [3], indicating that the

range of PRED is generally adequate in practice. Moreover, to
address high-concurrency short-flow bursts, FCS can rapidly
notify the end nodes by adjusting λ to ensure fast convergence
of the queue.
Computing and storage overhead. The computing and
storage requirements are minimal. FCS is designed to be
pipelined on the data plane, allowing all steps to execute in
parallel, regardless of the size of the topology or the number
and types of present flows. QLA involves a simple compari-
son of several values, imposing small computational overhead.
In terms of storage requirements, each port requires only a
few registers to cache the traffic count N and a corresponding
bitmap. For example, each port uses 128 bits, N uses 8 bits,
and the remaining 120 bits are used as bitmap.
About the maxK. In PRED, we utilize the point-
slope form (minK,λ) instead of the the two-point form
(minK,maxK,maxP). This means that in the point-slope form,
the maxK is implicitly incorporated within the parameter λ.
However, we acknowledge that maxK is still necessary for
final protection in practical implementation because the point-
slope is still implemented on the two-point basis. To accom-
modate extreme scenarios, we set a larger fixed value for
maxK. In our measurements, maxK is set to 500 KB.
Selection of TFCS. The TFCS should be carefully set as its
accuracy significantly affects the performance. First of all,
TFCS must be greater than RTT because the estimate will be
small because at least one RTT is required for all flows to pass
through the switch. TFCS should not be too big because when
the flow number decreases, the update of N will be delayed.
As shown in Figure 4.1(b), N remains 3 from time T4 to time
T5, while the ground truth is only 2. Considering the queuing
delay during congestion, we find that setting TFCS = 1.25RT T
is applicable. We have also verified the parameter sensitivity
analysis in Appendix D.5.
Selection of TQLA. Note that TFCS is independent of TQLA be-
cause the two modules are separate modules. The setting of
TQLA is a tradeoff. The smaller TQLA, the faster the conver-
gence, but the more unstable. Vice versa. In addition, it is also
limited by the location where the QLA module is deployed. If
the QLA module is deployed on the control plane, the interac-
tion delay between the control plane and the data plane should
be considered. In our implementation, reading the register in
the control plane takes 5 to 12 ms, and updating the RED table
takes 80 to 110 ms. Therefore TQLA is at least 200 ms due to
hardware limitations. We discuss the details in Appendix C.2.
In this paper, it is recommended TQLA = 5RT T in simulation
(on the data plane) and TQLA = 400 ms in the testbed (on
the control plane due to hardware limitation). We have also
verified the parameter sensitivity analysis in Appendix D.5.
Selection of other parameters. PRED also has some param-
eter settings that are trade-offs. In QLA, β is the weight that
represents the bandwidth-delay tradeoff. The network oper-
ator can easily set the parameters based on the requirement
of running applications. For example, our measurements are

based on β = 0.4. The initial minK needs a relatively small
value in order to ensure that the adjustment range of the λ can
be larger. The initial minK is 10 packets. qle f t is the parameter
that QLA uses to ensure that the value of the utility function
remains stable when the queue is small. The larger the qle f t ,
the more stable the utility value, but the longer the queue
length. qle f t is set to 15 packets in this paper. λmin is the divid-
ing point between the adjusting λ and the adjusting minK in
QLA, we use λmin = 0.05, For the trial step parameter setting,
the bigger the trial step, the faster the adjustment speed, but
the worse the stability, we use ∆λ = 0.025, and ∆minK = 5
packets in this paper. PRED tunes the RED parameters be-
cause they are sensitive to traffic dynamics. The parameters
introduced by PRED are traffic-insensitive. However, fine-
tuning these parameters remains essential, and enhancing the
parameter selection process is a key focus of our future work.

5 Implementation
Ideally, PRED’s FCS and QLA would be implemented in
switch ASICs. We implement a prototype of PRED on Bare-
foot Tofino 1 programmable switch, including 12 MAU stages,
120 MB SRAM and 6.2 MB TCAM per pipeline. The devel-
opment effort on the switch includes about 350 lines of P4
code [34] for the data plane and 300 lines of Python for the
control plane. The FCS module needs to quickly recognize
N, so it is deployed on the data plane. Theoretically, the QLA
can be deployed on either the data plane or the control plane.
Deployment on the control plane has low resource overhead
but high latency, and vice versa. We chose to deploy the QLA
to the control plane due to limited MAU stages. We have
implemented PRED where both QLA and FCS are deployed
on the data plane, but 17 stages are needed (see details in Ap-
pendix C). Tofino 1 [24] has only 12 stages, so we deploy the
QLA module on the control plane. However, the new Tofino 2
and Tofino 3 switches support 20 stages [24], so the QLA and
FCS modules can be deployed in the data plane at the same
time. All implementation details are deferred to Appendix C.

6 Evaluation
In this section, we conduct both testbed experiments and NS-3
simulations4 to answer the following questions:

• How does PRED perform in practice and scale to large
datacenters?

• Why does PRED achieve high performance?
• What are the advantages of PRED compared to Deep

Reinforce Learning methods?
• How do we decide the key parameters in PRED itself?

6.1 Methodology
Transport Protocol. We are using DCTCP [3] as the default
congestion control at the end host. We also have experiments
to verify the capabilities of PRED with DCQCN (details in

4The implementation in NS3 is identical to that of the programmable
switch, yet the languages differ; NS3 is C++, and the testbed is P4.

Appendix D.1). Since the results are similar, we only use
DCTCP later. In our testbed experiments, we used DCTCP
from Linux kernel 4.15.0 [35]. The NS-3 simulation [26]
implementation of DCTCP refers to the official implementa-
tion [36]. The parameters are set as suggested in [3].

Schemes Compared. We compare PRED against the follow-
ing 9 schemes:
(a) RED [testbed, simulation]: RED’s implementation is
based on instantaneous ECN marking rather than weighted
average queues, as in the DCTCP [3] and DCQCN [5] papers.
For the testbed, we implement it on the Barefoot Tofino switch.
For simulation, we start from the NS-3’s RED implementation
and add instantaneous ECN marking.
(b) ECN [testbed, simulation]: Here we refer to the single-
valued RED algorithm as ECN, i.e., instantaneous ECN mark-
ing based on a single threshold minK = maxK = K.
(c) ECNsharp [simulation]: ECNsharp [15] marks packets
based on both instantaneous and persistent congestion.
(d) CoDel [simulation]: CoDel [37] tracks minimal queueing
over an interval to mark packets based on persistent queueing.
(e) ACC [simulation]: ACC [17] is a practical approach that
allows automatic adjustment of ECN parameters at switches
by utilizing deep reinforcement learning (DRL). We refer to
the original design in paper [17] and re-implement ACC in
the NS-3 simulation.
(f) Only FCS [testbed, simulation]: The particular PRED
which contains only the Flow Concurrent Stabilizer.
(g) Only QLA [testbed, simulation]: The particular PRED
which contains only the Queue Length Adjuster.
(h) TCN [simulation]: TCN uses instantaneous sojourn time
to adapt to packet schedulers. We implement TCN based on
the software prototype provided by TCN paper [38].
(i) HPCC [simulation]: HPCC [7] is a new congestion con-
trol scheme, which needs to modify the NIC and the switch
that supports INT. HPCC can adjust the rate MIMD through
the INT information.

Metrics. We use the Flow Completion Time (FCT) as the pri-
mary metric. Besides the overall average FCT, we also break
down FCT results across small flows (< 100 KB) and large
flows (> 1 MB). All are normalized to the results achieved
by PRED. We also show a queue length timing diagram for a
fine-grained comparison of the various algorithms.

6.2 Testbed Experiments
In this section, we analyze the performance of PRED. Our
assessment aims to confirm the stability of traffic concur-
rency (FCS), assess the effectiveness of dynamically adjusting
queues in response to traffic dynamics (QLA), and determine
the importance of integrating both modules.
Flow Concurrent Stabilizer. We first tested PRED’s stability
of traffic concurrency, as well as different design options. We
use the testbed in § 3.1 with 3 servers connected to a Barefoot
Tofino switch with PRED ’s implementation. There are 2
senders and 1 receiver. We used iperf3 [39] for sending traffic

10 20
Concurrent Flows (N)

(a) Throughput

8.0

8.5

9.0

9.5

Th
ro

ug
hp

ut
 (G

bp
s)

10 20
Concurrent Flows (N)

(b) Queue Length

25

50

75

100

125

Qu
eu

e
Le

ng
th

 (K
B)

10 20
Concurrent Flows (N)

(c) λ

0

2

4

6

λ

PRED
Only FCS(N2)

Only FCS(N)
Only FCS(√N)

RED(λ=1.65)

Figure 11: [Testbed] PRED performance with different
flow concurrency levels (N).

and measured the throughput and queue length by varying the
concurrent flows sent by each sender. Using only two senders
is to verify that concurrency problems still exist in the case of
multiple bottlenecks (one at the sender and one at the switch).
We use RED as a comparison. We pick initial λ whose effect
is approximately equal when N=2. λ in FCS(N) and PRED is
0.1 (2×0.1 = 0.2), λ in FCS(N2) is 0.05 (22×0.05 = 0.2),
and λ in FCS(

√
N) is 0.2 (

√
2×0.2 = 0.28).

Figure 11 shows the performance of PRED and only FCS
with different design choices. We can see from the figure
11(a) that all algorithms except FCS(N2) and RED can main-
tain a relatively high throughput of about 9.4 Gbps. FCS(N2)
sacrificed about 0.4 Gbps throughput due to low queue length.
From figure 11(b), the queue length of PRED and FCS(N)
remained stable with the increase of N. The queue length of
FCS(

√
N) was still growing, but the queue length of FCS(N2)

was decreasing with the increase of N. The reason for the
noise when N = 2 is that there is not enough concurrency.
Figure 11(c) shows the λ as N changes.

The above analysis shows that it is most appropriate for
PRED to select the N for the FCS module. In § 4.1, we analyze
that f (N) =

√
N can eliminate the influence of N on queue

length. However, the modeling assumes concurrent traffic, so
when N<5, the FCS module can still maintain a stable queue,
but when N>5, the concurrent traffic assumption fails so that
the queue will grow. We also tested f (N) =N and f (N) =N2,
N2 turns out to be too aggressive, while N is more feasible.

Finally, we compared PRED and only FCS (N) separately.
As can be seen from Figure 11(b), when N>15, PRED will
make the queue length lower without losing throughput. Com-
pared with only FCS, PRED can further adjust the queue
length by adjusting λ according to the network condition.
Queue Length Adjuster. We next tested PRED’s ability to
tune parameters dynamically. We use 7 servers connected to
a Barefoot Tofino switch. There are 6 senders and 1 receiver.
Each sender uses an open-source traffic generator [40, 41] to
generate the benchmark traffic to the receiver. The network
load is 60%. K in ECN is 70 packets. We generate traffic
based on WebSearch [3] realistic workloads.

Figure 12 shows FCT on different flow sizes. From the
results, we can see that the 99th FCT and average FCT of RED
(λ =0.1) is the smallest, and the FCT of RED (λ =1) is the

10K 1M

Flow Size (Bytes)

(a) 99th Normalized FCT

1.0

1.1

1.2

1.3

1.4

99
th

 N
or

m
al

ize
d

FC
T

1K 10K 100K 1M 10M

Flow Size (Bytes)

(b) Avg Normalized FCT

1.0

1.1

1.2

1.3

1.4

Av
g

No
rm

al
ize

d
FC

T

PRED(>10s)
PRED(<1s)

ECN
RED (0.1)

RED (1)

Figure 12: [Testbed] FCT statistics (TQLA = 0.4 s).

largest. With the same workload, PRED does not initially have
a suitable λ, so the FCT of PRED (<1s) is close to RED (1).
When run for about 10 s, PRED converge to the appropriate λ,
so the FCT of PRED (>10s) converges to RED (0.1). Note that
the implementation of PRED on Tofino 1 places QLA on the
control plane, so TQLA = 0.4 s. As discussed in § 5, the bigger
TQLA is, the slower convergence rate is, but the deterministic
direction of adjustment is stable. If PRED can be implemented
on Tofino 2 or a better switch, TQLA can become smaller and
PRED can converge faster.

Based on the above analysis, we know that PRED can
bound steady-state queue length with dynamic flow concur-
rency and can make queue length adjustment traffic-aware in
a stable manner to maximize the network effect.

6.3 Simulation Experiments
In this section, we will use simulation to analyze the perfor-
mance of PRED. At the same time, we will fine-grain compare
the differences between different algorithms and answer why
PRED can have a good performance. First, the performance of
PRED in real datacenters is tested by large-scale NS-3 simu-
lation. Then we analyze why FCS and QLA should cooperate
with each other through the sequence diagram of queue length
and analyze why the performance of different algorithms is
not optimal. Then we compared the differences between DRL-
enable ACC and PRED. Finally, we analyze the PRED related
parameter settings and packet scheduler in detail.

6.3.1 Large Scale Simulations
To complement our testbed experiments, we evaluate PRED
on a larger-scale spine-leaf topology with realistic workloads.
Setup: We simulate a 128-host leaf-spine topology with 8
spine and 8 leaf switches. Each leaf is connected to 16 servers
via 10 Gbps links. The spine and leaf switches are also con-
nected via 10 Gbps links. The latency of the link is 10 µs.
We use ECMP for load balancing. We generate traffic based
on two realistic workloads in production: WebSearch [3] and
DataMining [42]. Each sender sends messages in a Poisson
flow, and the target loads for the fixed receiver range from 10%
to 90%. K in ECN is 70 packets. The instantaneous marking
threshold for ECNSharp is 80 µs, the persistent target thresh-
old is 10 µs and the persistent interval is 150 µs. For CoDel,
we set the interval to be 150 µs and the target to be 10 µs.
The results are shown in Figure 13 and 14. Due to the space

0.2 0.4 0.6 0.8
Load

(a) AVG FCT

1

2

3

4
No

rm
al

ize
d

FC
T

0.2 0.4 0.6 0.8
Load

(b) Large Flow AVG FCT[>1M]

1

2

3

4

0.2 0.4 0.6 0.8
Load

(c) Small Flow AVG FCT[<100K]

1

2

3

4

0.2 0.4 0.6 0.8
Load

(d) Small Flow 99th FCT[<100K]

1

2

3

4
PRED
CODEL
ECNSharp
ECN

PRED
CODEL
ECNSharp
ECN

PRED
CODEL
ECNSharp
ECN

PRED
CODEL
ECNSharp
ECN

Figure 13: [Simulation] FCT statistics with different ECN algorithm.

0.2 0.4 0.6 0.8
Load

(a) AVG FCT

1.0

1.5

2.0

No
rm

al
ize

d
FC

T PRED
RED
FCS
QLA

0.2 0.4 0.6 0.8
Load

(b) Large Flow AVG FCT[>1M]

1.0

1.5

2.0
PRED
RED
FCS
QLA

0.2 0.4 0.6 0.8
Load

(c) Small Flow AVG FCT[<100K]

1.0

1.5

2.0
PRED
RED
FCS
QLA

0.2 0.4 0.6 0.8
Load

(d) Small Flow 99th FCT[<100K]

1.0

1.5

2.0
PRED
RED
FCS
QLA

Figure 14: [Simulation] FCT statistics with different RED algorithm.

0 20 40 60 80
Time (ms)

0

50

100

Ql
en

gt
h

(P
kt

s) N=4 N=16 N=4 N=8 Flows (N)

ECN CODEL ECNSharp PRED

(a) Compare with ECN algorithm

0 20 40 60 80
Time (ms)

0

50

100

Ql
en

gt
h

(P
kt

s) N=4 N=16 N=4 N=8 Flows (N)
Short
queue

RED FCS QLA PRED

(b) Compare with FCS and QLA
Figure 15: [Simulation] Queue Length.

limitation, We listed the DataMining results in Appendix D.2.
All results have been normalized to FCT achieved by PRED.
Results: As shown in Figure 13, PRED’ small flow 99th FCT
(1.4 ms) has a reduction ranging from 68% (ECNSharp, 4.34
ms) to 80% (CODEL, 6.68 ms) compared to ECN algorithms
at 90% load. For Large flows, there was a negligible increase
in the FCT of PRED (96.8 ms), ranging from 4.6% (CODEL,
92.5 ms) to 12.5% (ECNSharp, 86 ms) compared to ECN al-
gorithms at 90% load. This proves that PRED can outperform
other ECN algorithms in real-workload scenarios. In Figure
14, PRED and FCS perform better than the static threshold
RED. QLA alone does not improve performance. FCS alone
is not optimal at high concurrency, and QLA should be com-
bined to further reduce the FCT of small flows.

6.3.2 PRED Microscopic View
We want to know why PRED is better, so we conduct a com-
parative analysis through time sequence diagrams.
Setup: We use a simple 16-to-1 topology with 10 Gbps links,

16 servers are senders and 1 receiver. Other settings are similar
to § 6.3.1. To provide a clearer illustration of how different
schemes handle their queues, we sample the queue length of
the bottleneck link every 10 µs. The number of concurrent
flows is constantly changing.
Results: Figure 15 shows the queue changes of different al-
gorithms at the bottleneck port. PRED effectively eliminates
queue buildups by keeping the switch queue length 66% lower
than that of the static threshold algorithms (from 25 packets to
15 packets). As can be seen in Figure 15(a), PRED gradually
adjusts the queue length over time, making the queue lower
than other algorithms. And since it is essentially a RED al-
gorithm, probabilistic marking makes the queue more stable,
and the vibration amplitude will be smaller. ECNsharp uses
two ECN thresholds, but fixed adjustment makes the queue
unstable as shown in Figure 15(a). In addition, PRED can
converge faster when burst is encountered, resulting in less
queue fluctuation.

Figure 15(b) compares FCS and QLA. From figure 15(b),
FCS can converge rapidly but will keep the queue length
stable at about 23 packets, while PRED will further reduce the
queue length. Because QLA cannot adjust λ MIMD according
to N, the convergence process is turbulent. Therefore, we can
conclude that FCS and QLA need to cooperate with each
other so that PRED can achieve the best performance.
6.3.3 Compared with ACC
ACC uses DRL to automatically adjust the RED parame-
ter. DRL requires a lot of data and training to use. We com-
pare PRED and ACC with a simple many-to-one incast sce-
nario. The RED part of ACC uses NS3 simulation and the
Learning part of ACC uses NS3-GYM [43]. We use only
one agent to learn the traffic conditions in the congested
port, reducing the amount of data to learn. We use Dou-
ble DQN [23] to implement ACC. The State is 6 normal-
ized values (q̄,R,Rm,minK,maxK,maxP). They are the queue
length (q̄), the port speed (R), the speed of marking ECN

0.2 0.4 0.6
Small flow FCT (ms)

(a) CDF of Small flow (<100K)

0.0

0.5

1.0
CD

F

ACC
PRED

0 50 100
Qlength (Pkts)

(b) CDF of Queue Length

0.0

0.5

1.0

CD
F

99th
95th

Figure 16: [Simulation] CDF of FCT and Queue length.

100 105 110 115 120 125
TiPe (Ps)

0

50

100

1
 (f

lR
w

s)

ACC
P5(D

Bad RED SettingBurst small
flows

Large flows

100 105 110 115 120 125
TiPe (Ps)

0

50

100

Q
le
Qg
th
 (P
kt
s) ACC

P5(D

Figure 17: [Simulation] Qlength of ACC and PRED.

(Rm), and the current RED setting (minK,maxK,maxP). Ac-
tion space dimension is 4× 3× 21, i.e., minK(2,4,8,16)×
maxK(20,50,100)×maxP({1%, j×5%},∀ j ∈ [1,20]). The
Reward function is consistent with PRED’s utility function.
We train ACC for 200,000 epochs using the same trace for
both training and testing. It’s important to note that in our cur-
rent testing, ACC encounters the same trace as during training.
Even if we aim for deep reinforcement learning to over-fit the
results, the stability of the outcomes cannot be guaranteed.
Setup: We use a simple 18-to-1 topology with 10 Gbps links,
18 servers are senders, and 1 receiver. Other settings are simi-
lar to § 6.3.1. We send flows from 18 senders to the receiver.
The size of both large and small flows are generated based on
two artificial workloads mentioned in § 3.1 (workload 1 (3-6
KB) for small flows and workload 2 (30-600 KB) for large
flows). Both kinds of traffic are sent synchronously, and we
measure the FCT of small flows (< 100 KB).
Results: Figure 16 shows the FCT and queue length of ACC
and PRED in this particular scenario. As can be seen from
Figure 16(a), FCT is similar at 50th, but PRED reduced 99th
FCT by 34% compared to ACC (from 0.63 ms to 0.47 ms).
From Figure 16(b), the tail of the queue length in ACC is
also larger. The 95th percentile in the ACC is 37 packets, and
the PRED is 25 packets; The 99th queue length ACC is 105
packets, while the PRED is 54 packets.

According to the above analysis, PRED was better than
ACC in tail FCT and tail queue length. To further understand
why PRED is better than ACC, we selected a time slice of the
ACC runtime, shown in Figure 17. From the figure, the queue
length convergence of PRED and ACC is similar because they
share the same objective function. However, at around 110 ms,
the ACC queue length significantly increases. The reason is
that even after ACC is deployed, it still needs to have a random
exploration probability from learning new network condition
changes. Some bad RED Settings will be selected (around 110
ms in Figure 17), resulting in large queue lengths and high tail
latency. In conclusion, the use of machine learning methods

50% Load
0

100

200

300

400

FC
T

(u
s)

PRED
RED
CODEL
ECNSharp

80% Load
0

200

400

600
99th
avg

Figure 18: [Simulation] Small Flow FCT statistics with
DataMining workload.

0 20 40
Time (ms)

0

25

50

75

100

Ql
en

gt
h

(P
kt

s) HPCC
PRED

0 20 40
Time (ms)

0

50

100

Ra
te

 (G
bp

s)

HPCC
PRED

Figure 19: [Simulation] Comparison of PRED and HPCC.

needs to be carefully set up in the exploration scheme, The
unreadable and untunable model will affect the tail latency. A
white-box PRED can ensure that the queue converges to the
appropriate position.

6.3.4 100 Gbps with 1000s Concurrent Flows
We also evaluate PRED on 100 Gbps networks and with
thousands of concurrent flows.
Setup: The topology is the same as the one used in § 6.3.1
with a 128-host leaf-spine topology and 100 Gbps links. The
latency of the link is 1 µs. On 128 hosts, randomly select
1000 senders, with an average of 7 senders started per host,
and choose a fixed receiver. Each sender sends messages in
a Poisson flow, and the target loads for the fixed receiver are
50% and 80% respectively. The DataMining [42] results are
shown in Figure 18. Due to the space limitation, We listed the
WebSearch results in Appendix D.3.
Results: As shown in Figure 18, PRED’ small flow 99th FCT
(240 µs) has a reduction ranging from 48% (RED, 468 µs)
to 66% (CODEL, 713 µs) at 80% load. PRED’ small flow
average FCT (42 µs) has a reduction ranging from 52% (RED,
88 µs) to 75% (CODEL, 174 µs) at 80% load. This proves
that PRED can outperform other ECN algorithms in 100 Gbps
with 1000s concurrent flows.

6.3.5 Comparison of PRED and HPCC
We also compare PRED with HPCC [7] to show how PRED
compares to the newer congestion control schemes. HPCC’s
convergence target is 95% bandwidth, so it can always keep
the short queue length and is very friendly for short flows.
HPCC needs to modify NICs and switches but PRED only
needs to modify switches incrementally. Here we want to see
how far PRED is from HPCC.
Setup: We use a simple 20-to-1 topology with 100 Gbps
links, 20 servers are senders and 1 receiver. The latency of
the link is 1 µs. The parameters are set as suggested in [7].
The NS-3 simulation implementation of HPCC refers to the

implementation in [7]. Starting at 0 ms, start two long flows.
At 20 ms, 6 long flows are started concurrently.
Results: Figure 19 shows the queue length and throughput
of PRED and HPCC. As shown in Figure 19, HPCC has
consistently maintained a low queue length of almost zero and
93% throughput. The PRED queue length gradually converges
from 20 to 15, and it is always full throughout. At 20 ms burst,
the PRED queue fluctuates less, mainly because HPCC does
not have a slow start process, so the queue changes greatly.

6.3.6 Packet Scheduler and Parameter Design Choice
We also compare PRED with TCN [38] and ECNsharp [15] to
show how PRED works with arbitrary packet scheduler and
analyze parameter design choice. Due to space limitations,
we present the results in Appendix D.4.

7 Related Work
The most relevant work for PRED is ACC [17], which has
been discussed in detail in this paper. Next, we will introduce
some other related work.
Dynamically Adjust the RED Threshold. Since the RED
algorithm was initially proposed, many proposals studied how
to adjust the RED parameters dynamically [44–48]. Feng’s
ARED [44, 45] adjusts the marking/dropping probability,
maxP, in RED to keep the average queue size stable between
minK and maxK, in the form of MIMD. Floyd’s ARED [46] ad-
justs maxP in AIMD way to make the queue length fluctuate
around a certain value. STAQM [48] adjusts AQM parameters
by modeling and parameterizing the RED algorithm and PI
algorithm [49] to estimate network state according to network
measurement and estimation. These art demonstrate the bene-
fits of dynamic RED parameters. However, they only assure
convergence of queue length, while the exact converged queue
length must be manually set. As a result, their applicability in
datacenter networks is limited.

Recently, there also exist some new algorithms [14–16] for
ECN proposed in datacenters. BCC [16] dynamically adjusts
the RED algorithm based on the global shared buffer usage.
Port-level RED is used when utilization is low, and the shared
buffer RED is used when the utilization is high. TCD [14]
finds that in lossless networks, the queue has an undetermined
state between congestion and non-congestion. It is critical to
identify the undetermined state and notify the end host. These
art found that ECN with a fixed threshold would be ineffective
in datacenters and therefore set more than one state during
threshold adjustment. However, they still use fixed thresholds
that cannot automatically adjust based on traffic dynamics.
Buffer Sizing and AQM in Internet. The most well-known
rule of buffer sizing showed that the minimum buffer size
should be C×RT T/

√
N when there are a large number of

N long-lived TCP Reno flows [50]. Existing new congestion
controls such as BBR [29] also require new theories to set
buffer sizes [51,52]. Bruce et al. [30] also discussed how to es-
timate the number of N on a router. The above studies inspired

PRED’s motivation to dynamically adjust RED Settings by
counting traffic numbers in datacenters.

Most ECN-based datacenter congestion control algorithms
[3, 53, 54] set the two thresholds of RED to the same value,
minK = maxK = K. The ideal ECN marking threshold K is
given as K = λ×C×RT T [3, 38, 41, 54, 55]. Different con-
gestion controls have different λ, TCP is 1 [54], DCTCP is
0.17 [55]. Through experiments in §3.2, we found that the re-
lationship between single-value RED and N is that the ampli-
tude of the queue increases with the increase of N. Therefore,
PRED does not regulate based on single values.

MQ-ECN [41] first pointed out the drawbacks of existing
ECN/RED implementations in the packet scheduling context.
To adapt to the varying queue capacity caused by packet sched-
ulers, TCN [38] proposed to use instantaneous sojourn time
to mark packets. ECNsharp [15] inherits the merit of TCN
but further tracks the persistent congestion state to reduce
long-term queue buildups. PRED can make the steady-state
queue consistent for different priorities/queues so that it can
be well adapted to different packet schedulers.
Congestion Control for Datacenters. Most of the network
congestion problems are solved by proposing new conges-
tion control solutions. HULL [56] sacrifice throughput in
exchange for low latency. It marks the ECN by calculating
link utilization rather than queue length. PRED can use a
scheme similar to the HULL, but the difficulty is that it re-
quires the endpoint to use the packet pacing function to ensure
throughput utilization. pFabric [57], BFC [9], and HPCC [7]
rely on precise in-network state information of switches and
update transmission rate for each flow. pFabric achieves near-
optimal FCT by using (infinite) priority queues on switches.
The BFC enables the switch queue to reach one-hop BDP
through the backpressure rate control of per-flow and per-hop.
HPCC adjusts the speed MIMD through the INT informa-
tion of the switch. PCN [58], Homa [59] rely on the receiver
to send credit packets to determine the sending rate of each
flow. TIMELY [6] and Swift [8] are RTT-based schemes to
adjust the flow rate at end host. These approaches achieve
remarkable performance. However, they require changes to
the network stack that are not easy to implement on older
hardware devices.

8 Conclusion
This paper revisits the RED parameter configuration and pro-
poses the design of PRED by capturing the key features of
datacenter traffic dynamics in terms of flow concurrency and
flow distributions. Adaptively and effectively, PRED achieves
automatic adjustment of RED parameters stably. Through
evaluations, we demonstrate that PRED is more stable than
ACC [17], the state-of-the-art learning-based approach. With-
out any modifications at the end host, and with a more sta-
ble RED parameter configuration that adapts well to traffic
dynamics, as the future work, we believe PRED has good
potential to be deployed in modern production datacenters.

Acknowledgements
We are thankful to the anonymous NSDI reviewers and our
shepherd, Vijay Chidambaram, for their constructive feed-
back. This work is supported in part by the China National
Funds for Distinguished Young Scientists (No.62425201), the
NSFC Projects (No.61932016, No.62132011, No.62221003
and No.62202473), and the CCF-Huawei Populus Euphratica
Innovation Research Funding.

References

[1] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In IEEE MSST, pages 1–10, 2010.

[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simpli-
fied data processing on large clusters. Communications
of the ACM, 51(1):107–113, 2008.

[3] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
tcp (dctcp). In ACM SIGCOMM, pages 63–74. ACM,
2010.

[4] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed sys-
tems. arXiv preprint arXiv:1512.01274, 2015.

[5] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale rdma deploy-
ments. ACM SIGCOMM Computer Communication
Review, 45(4):523–536, 2015.

[6] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. Timely: Rtt-based congestion control for the dat-
acenter. ACM SIGCOMM Computer Communication
Review, 45(4):537–550, 2015.

[7] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan
Yu. HPCC: high precision congestion control. In Jian-
ping Wu and Wendy Hall, editors, Proceedings of the
ACM Special Interest Group on Data Communication,
SIGCOMM 2019, Beijing, China, August 19-23, 2019,
pages 44–58. ACM, 2019.

[8] Gautam Kumar, Nandita Dukkipati, Keon Jang, Has-
san MG Wassel, Xian Wu, Behnam Montazeri, Yaogong

Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, et al. Swift: Delay is simple and effective for con-
gestion control in the datacenter. In ACM SIGCOMM,
pages 514–528. ACM, 2020.

[9] Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Niko-
laidis, Mohammad Alizadeh, and Thomas E. Anderson.
Backpressure flow control. In USENIX NSDI, pages
779–805. USENIX Association, 2022.

[10] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve D.
Gribble, Nicholas Kidd, Roman Kononov, Gautam Ku-
mar, Carl Mauer, Emily Musick, Lena E. Olson, Erik
Rubow, Michael Ryan, Kevin Springborn, Paul Turner,
Valas Valancius, Xi Wang, and Amin Vahdat. Snap:
a microkernel approach to host networking. In Tim
Brecht and Carey Williamson, editors, Proceedings of
the 27th ACM Symposium on Operating Systems Prin-
ciples, SOSP 2019, Huntsville, ON, Canada, October
27-30, 2019, pages 399–413. ACM, 2019.

[11] Abhishek Dhamija, Balasubramanian Madhavan,
Hechao Li, Jie Meng, Shrikrishna Khare, Madhavi Rao,
Lawrence Brakmo, Neil Spring, Prashanth Kannan,
Srikanth Sundaresan, and Soudeh Ghorbani. A
large-scale deployment of DCTCP. In 21st USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 24), pages 239–252, Santa Clara, CA,
April 2024. USENIX Association.

[12] Bryce Cronkite-Ratcliff, Aran Bergman, Shay Vargaftik,
Madhusudhan Ravi, Nick McKeown, Ittai Abraham, and
Isaac Keslassy. Virtualized congestion control. In
Proceedings of the 2016 ACM SIGCOMM Conference,
pages 230–243. ACM, 2016.

[13] Keqiang He, Eric Rozner, Kanak Agarwal, Yu Gu, Wes
Felter, John Carter, and Aditya Akella. Ac/dc tcp: Vir-
tual congestion control enforcement for datacenter net-
works. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 244–257. ACM, 2016.

[14] Yiran Zhang, Yifan Liu, Qingkai Meng, and Fengyuan
Ren. Congestion detection in lossless networks. In ACM
SIGCOMM, pages 370–383. ACM, 2021.

[15] Junxue Zhang, Wei Bai, and Kai Chen. Enabling ecn for
datacenter networks with rtt variations. In ACM CoNext,
pages 233–245. ACM, 2019.

[16] Wei Bai, Shuihai Hu, Kai Chen, Kun Tan, and
Yongqiang Xiong. One more config is enough: Sav-
ing (dc) tcp for high-speed extremely shallow-buffered
datacenters. IEEE/ACM Transactions on Networking,
29(2):489–502, 2020.

[17] Siyu Yan, Xiaoliang Wang, Xiaolong Zheng, Yinben
Xia, Derui Liu, and Weishan Deng. Acc: Automatic
ecn tuning for high-speed datacenter networks. In ACM
SIGCOMM, pages 384–397. ACM, 2021.

[18] K Ramakrishnan, Sally Floyd, and D Black. Rfc3168:
The addition of explicit congestion notification (ecn) to
ip, 2001.

[19] Sally Floyd and Van Jacobson. Random early detec-
tion gateways for congestion avoidance. IEEE/ACM
Transactions on networking, 1(4):397–413, 1993.

[20] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, et al. Jupiter
rising: A decade of clos topologies and centralized con-
trol in google’s datacenter network. ACM SIGCOMM
computer communication review, 45(4):183–197, 2015.

[21] Glenn Judd. Attaining the promise and avoiding the
pitfalls of tcp in the datacenter. In USENIX NSDI, pages
145–157. USENIX Association, 2015.

[22] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun
Singh, Mukarram Tariq, Rui Wang, Jianan Zhang, Vir-
ginia Beauregard, Patrick Conner, Steve Gribble, et al.
Jupiter evolving: transforming google’s datacenter net-
work via optical circuit switches and software-defined
networking. In ACM SIGCOMM, pages 66–85. ACM,
2022.

[23] Hado Van Hasselt, Arthur Guez, and David Silver. Deep
reinforcement learning with double q-learning. In AAAI,
volume 30, 2016.

[24] Tofino product family brochure. https:
//www.intel.com/content/dam/www/
central-libraries/us/en/documents/
tofino-product-family-brochure.pdf. 2022.

[25] The P4 Language Consortium. p416 language specifica-
tion version 1.0.0. 2016.

[26] Network simulator 3. (2019). https://www.nsnam.org/.
2019.

[27] Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra
Padhye. Ecn or delay: Lessons learnt from analysis
of dcqcn and timely. In ACM CoNext, pages 313–327.
ACM, 2016.

[28] Sally Floyd. Tcp and explicit congestion notification.
ACM SIGCOMM Computer Communication Review,
24(5):8–23, 1994.

[29] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. Bbr:

Congestion-based congestion control: Measuring bottle-
neck bandwidth and round-trip propagation time. ACM
Queue, 14(5):20–53, 2016.

[30] Bruce Spang and Nick McKeown. On estimating the
number of flows. In Stanford Workshop on Buffer Sizing,
2019.

[31] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey,
and Michael Schapira. Pcc: Re-architecting congestion
control for consistent high performance. In USENIX
NSDI, pages 395–408. USENIX Association, 2015.

[32] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan,
Yossi Gilad, Brighten Godfrey, and Michael Schapira.
Pcc vivace: Online-learning congestion control. In
USENIX NSDI, pages 343–356. USENIX Association,
2018.

[33] Tong Meng, Neta Rozen Schiff, P Brighten Godfrey, and
Michael Schapira. Pcc proteus: Scavenger transport and
beyond. In ACM SIGCOMM, pages 615–631. ACM,
2020.

[34] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
44(3):87–95, 2014.

[35] Dctcp in linux kernel. https://www.kernel.org/
doc/html/latest/networking/dctcp.html. 2022.

[36] Dctcp in ns3 simulation. https://www.nsnam.org/
docs/release/3.36/models/html/tcp.html?
highlight=dctcp. 2022.

[37] Kathleen Nichols and Van Jacobson. Controlling queue
delay. Communications of the ACM, 55(7):42–50, 2012.

[38] Wei Bai, Kai Chen, Li Chen, Changhoon Kim, and
Haitao Wu. Enabling ecn over generic packet schedul-
ing. In ACM CoNext, pages 191–204. ACM, 2016.

[39] iperf - the ultimate speed test tool for tcp, udp and sctp.
https://iperf.fr/. 2022.

[40] Traffic generator. https://github.com/
HKUST-SING/TrafficGenerator. 2022.

[41] Wei Bai, Li Chen, Kai Chen, and Haitao Wu. En-
abling ecn in multi-service multi-queue data centers. In
USENIX NSDI, pages 537–549. USENIX Association,
2016.

[42] Albert Greenberg, James R Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A Maltz, Parveen Patel, and Sudipta Sengupta.

https://www.intel.com/content/dam/www/central-libraries/us/en/documents/tofino-product-family-brochure.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/tofino-product-family-brochure.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/tofino-product-family-brochure.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/tofino-product-family-brochure.pdf
https://www.kernel.org/doc/html/latest/networking/dctcp.html
https://www.kernel.org/doc/html/latest/networking/dctcp.html
https://www.nsnam.org/docs/release/3.36/models/html/tcp.html?highlight=dctcp
https://www.nsnam.org/docs/release/3.36/models/html/tcp.html?highlight=dctcp
https://www.nsnam.org/docs/release/3.36/models/html/tcp.html?highlight=dctcp
https://iperf.fr/
https://github.com/HKUST-SING/TrafficGenerator
https://github.com/HKUST-SING/TrafficGenerator

Vl2: A scalable and flexible data center network. In
ACM SIGCOMM, pages 51–62. ACM, 2009.

[43] Piotr Gawłowicz and Anatolij Zubow. ns-3 meets Ope-
nAI Gym: The Playground for Machine Learning in
Networking Research. In ACM MSWiM. ACM, 2019.

[44] Wuchang Feng, Dilip Kandlur, Debanjan Saha, and
Kang Shin. Techniques for eliminating packet loss in
congested tcp/ip networks. Technical report, Citeseer,
1997.

[45] W-C Feng, Dilip D Kandlur, Debanjan Saha, and
Kang G Shin. A self-configuring red gateway. In IEEE
INFOCOM, volume 3, pages 1320–1328, 1999.

[46] Sally Floyd, Ramakrishna Gummadi, Scott Shenker,
et al. Adaptive red: An algorithm for increasing the
robustness of red’s active queue management, 2001.

[47] Srisankar Kunniyur and Rayadurgam Srikant. Analysis
and design of an adaptive virtual queue (avq) algorithm
for active queue management. ACM SIGCOMM Com-
puter Communication Review, 31(4):123–134, 2001.

[48] Honggang Zhang, Don Towsley, CV Hollot, and Vishal
Misra. A self-tuning structure for adaptation in tcp/aqm
networks. In ACM SIGMETRICS, pages 302–303. ACM,
2003.

[49] Chris V Hollot, Vishal Misra, Don Towsley, and Wei-
Bo Gong. On designing improved controllers for aqm
routers supporting tcp flows. In IEEE INFOCOM, vol-
ume 3, pages 1726–1734, 2001.

[50] Guido Appenzeller, Isaac Keslassy, and Nick McKeown.
Sizing router buffers. ACM SIGCOMM Computer Com-
munication Review, 34(4):281–292, 2004.

[51] Bruce Spang. Updating the theory of buffer sizing.
ACM SIGMETRICS Performance Evaluation Review,
49(3):55–56, 2022.

[52] Tong Li, Kai Zheng, Ke Xu, Rahul Arvind Jadhav, Tao
Xiong, Keith Winstein, and Kun Tan. TACK: improving
wireless transport performance by taming acknowledg-
ments. In Henning Schulzrinne and Vishal Misra, edi-
tors, SIGCOMM ’20: Proceedings of the 2020 Annual
conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, ar-
chitectures, and protocols for computer communication,
Virtual Event, USA, August 10-14, 2020, pages 15–30.
ACM, 2020.

[53] Balajee Vamanan, Jahangir Hasan, and TN Vijayku-
mar. Deadline-aware datacenter tcp (d2tcp). ACM SIG-
COMM Computer Communication Review, 42(4):115–
126, 2012.

[54] Haitao Wu, Jiabo Ju, Guohan Lu, Chuanxiong Guo,
Yongqiang Xiong, and Yongguang Zhang. Tuning ecn
for data center networks. In ACM CoNext, pages 25–36.
ACM, 2012.

[55] Mohammad Alizadeh, Adel Javanmard, and Balaji Prab-
hakar. Analysis of dctcp: stability, convergence, and
fairness. ACM SIGMETRICS Performance Evaluation
Review, 39(1):73–84, 2011.

[56] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Bal-
aji Prabhakar, Amin Vahdat, and Masato Yasuda. Less
is more: trading a little bandwidth for ultra-low latency
in the data center. In USENIX NSDI, pages 253–266.
USENIX Association, 2012.

[57] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pfabric: Minimal near-optimal datacenter
transport. In ACM SIGCOMM Computer Communica-
tion Review, volume 43, pages 435–446. ACM, 2013.

[58] Wenxue Cheng, Kun Qian, Wanchun Jiang, Tong Zhang,
and Fengyuan Ren. Re-architecting congestion man-
agement in lossless ethernet. In USENIX NSDI, pages
19–36. USENIX Association, 2020.

[59] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
ACM SIGCOMM, pages 221–235. ACM, 2018.

A Problem Formulation

We take DCTCP as an example of the RED parameter break-
down based on a fluid model, as in paper [3, 5]. Table 1 sum-
marizes the main notations in this paper. Note that we can also
analyze other sources (e.g., DCQCN and TCP) in a similar
way [27, 28], since the conclusions remain similar, we omit
them here for conciseness.

In a fluid model, we consider N long-lived flows traversing
a single bottleneck link with capacity C. The following non-
linear, delay-differential equations describe the dynamics of
the window size w(t), the DCTCP’s estimated congestion
degree α(t), and the queue size q(t) at the switch:

dw
dt

=
1

RT T (t)
− w(t)α(t)

2RT T (t)
p(t−RT T ∗) (2)

dα

dt
=

g
RT T (t)

(p(t−RT T ∗)−α(t)) (3)

dq
dt

= N
w(t)

RT T (t)
−C (4)

Variable Description
w Window size
N Flow concurrency level
α Estimated congestion degree of DCTCP
g DCTCP’s parameter
t Time
q Bottleneck queue length

RT T Round-trip time (RTT)
C Bottleneck link capacity
d Propagation delay

Table 1: Variables of fluid model.

Here p(t) indicates the RED (ECN) marking process at the
switch and is given by:

p(t) =

1, q(t)> maxK

q(t)−minK
maxK−minK maxP, minK < q(t)<= maxK

0, q(t)<= minK

(5)

and RT T (t) = d+q(t)/C is the RTT, where d is the propaga-
tion delay (assumed to be equal for all flows), and q(t)/C is
computed as the queueing delay.

Equations (2) and (3) describe the congestion window ad-
justing scheme of DCTCP at the source, and Equation (4)
describes the queuing process at the switch. The source and
the switch are coupled through the packet marking process
p(t). This feedback delay is approximately a fixed value
RT T ∗ = d +qavg/C.

Equation (2) models the window evolution and consists of
the standard additive increase term, 1/RT T (t), and a multi-
plicative decrease term, −w(t)α(t)/2RT T (t). The latter term
models the source’s reduction of window size by a factor
α(t)/2 when packets are marked. Equation (3) is a continu-
ous approximation of DCTCP’s estimated congestion degree.
Equation (4) models the queue evolution: N w(t)

RT T (t) is the net-
work input rate and C is the service rate.

By setting the LHS (left hand side) of Equations (2)-(4) to
zero, we see that any fixed points of the DCTCP (if they exist)
must satisfy:

1− Ẇ α̇

2
ṗ = 0, ṗ− α̇ = 0,N

Ẇ

d + q̇
C

−C = 0 (6)

At any of the fixed points, we assume the value of p is ṗ,
which is shared by all flows, and we can get:

ṗ =
q̇−minK

maxK−minK
maxP = λ(q̇−minK) (7)

Combining Equations (6) and (7), we eliminate the variable
ṗ, α̇ and Ẇ . After simplification, we see that the value of q̇ is
determined by:

(q̇−minK)2(q̇+Cd) =
2N

(maxP
maxK−minK)

2
=

2N
λ2 (8)

35pt
: R153 G0 B0

:
LT Medium

: Arial

32pt
: R153 G0 B0

黑体

22pt
) :18pt
黑色

:
LT Regular

: Arial

20pt
):18pt
黑色

细黑体

Switch

CPU

Tofino
chip

Queue Length
Adjuster (QLA)

Flow Concurrent
Stabilizer (FCS)

RED Setting
𝜆 = 𝜆!"# # 𝑁

Counter&
Estimator

Monitor
 Module

Utility
Function

Decision
Maker

Packet
Buffer

Log

R

q

Utility

Update

𝜆!"#
 Update

 N

Figure 20: Hardware architecture of PRED on Tofino.

From Equation (8), we can see that the steady-state q̇ is only
related to three factors. The first factor is related to bottleneck
link C and feedback delay d. Once the network topology is
built, this factor will be fixed. The second factor is the flow
concurrency level N, and the larger N is, the larger q̇ is. Due
to the dramatic change of the flow concurrency N, the steady-
state q̇ will fluctuate sharply, which will affect the stability of
the network. The last but most important factor is the settings
of the RED parameter, i.e., λ and minK. We thus infer that
the essence of configuring RED parameters is to adjust the
steady-state queue length.

B Additional Discussion

Highly dynamic traffic pattern. If the network is highly
dynamic, PRED will tend to be stable, rather than a faster
convergence or faster traffic prediction. In a highly dynamic
network, the QLA will filter out the noise, and PRED will
adjust the parameters only when there is a positive reward
in the statistics within TQLA time. § D.5 shows that PRED
requires at least 200 ms to fully adapt to a purely short-flow
load from a purely high-flow load.
Overestimating N or underestimating N. If the true N ex-
ceeds the capacity of the estimator, then N will be underesti-
mated; If a lot of bursts come, then N will be overestimated.
In this case, the FCS flow estimate will be biased, but the
noisy N will still be better than the static threshold. As can
be seen in § 6.3.2, PRED can quickly respond to changes
in N, resulting in faster congestion adjustment and feedback
even if inaccurate. In addition, QLA can also compensate for
long-term estimation inaccuracies, so that PRED still keeps
the switch statistically high performance.

C Additional Implementation

Figure 20 shows the hardware architecture of PRED on the
Tofino switch.

C.1 Data Plane Modification
Counter & Estimator Module. PRED needs to know how
many flows are passing through the port of the switch at a time
interval. As described in § 4.1, switches only need a simple
bitmap and counters to implement this module. However,

each stage of the switch can operate on only one register, not
an array of bitmap registers. Thus, the switch cannot bulk
reset the bitmap registers periodically on the data plane. The
control plane can reset the registers of the data plane, but it
cannot be used because of the high API delay (>1 ms).

To solve this problem, PRED uses a time interval sequence
counter and a write-after hashing operation to calculate the
number of concurrent flows. Algorithm 1 shows the FCS data
plane processing logic. When a packet P arrives, the switch
first checks whether the current time now has been more than
an interval TFCS since the last update Tstart (line 1). If the time
is over this interval, some registers need to be updated and
reset (lines 2-5). If not, the packet P needs to be checked to
see whether it belongs to a new flow (lines 7-11).

We first analyze the reset process after the timeout (lines 2-
5). Tstart , nlast , nnow, Intervalseq and Bitmap are all Registers.
Tstart is the beginning of the interval (line 2) and needs to be
set to the current time now after the timeout occurs. nlast is
the flow number collected in the last interval (line 3), which
should be set to nnow after the timeout. nnow is the flow number
collected in the current interval (line 4), which needs to be set
to 0 after the timeout. Intervalseq is the serial number of the
time interval (line 5), which is used to distinguish different
time intervals. Bitmap is a hash table of length 2IndexSize.

Next, when there’s no timeout (lines 7-11), we analyze the
most critical process of counting flow numbers. The packet
P ’s flow hash Hnew is computed by hashing over the packet’s
5-tuple and interval sequence number Intervalseq (line 7).
Then the last IndexSize bits of the hash value is used as the
storage index Sid (line 8). The most crucial step is to read
the stored flow hash Hold in the Sid position in the hash table
bitmap and overwrite the Hnew in the corresponding position
(line 9). Then PRED checks whether the values of Hnew and
Hold are equal and if they are not, then the new flow is de-
tected (lines 10-11). The reason for using interval sequence
number Intervalseq for packet hashing is that we want flows
across different time intervals to be recounted at different
time intervals. To this end, the same flow must have different
hash values at different time intervals. With the above steps,
PRED does not need to bulk reset the value in the bitmap
register periodically on the data plane because the new hash
value is overwritten each time. Two conflicts may affect the
flow count, i.e., hash conflict (different hash parameters but
same hash value) and position conflict (different hash value
but same Sid). The hash conflict causes conflicting flows to be
viewed as one flow, and the position conflict causes conflict-
ing flows to alternately overwrite the same register, bringing
unusually high flow counts. However, the chances of the two
conflicts are low, and thus they have little effect on the perfor-
mance.

RED Setting Module. Because the P4 switch has no direct
division to use for the RED Setting Module, here PRED pro-
grams the RED algorithm into the PRED table (line 13). The

Algorithm 1 Data Plane Processing Logic.

1: if now−Tstart > TFCS then
2: UpdateRegTstart (now) ▷ Next time interval
3: UpdateRegnlast

(nnow)▷ Record the last interval flow number
4: UpdateRegnnow(0) ▷ Reset the current interval flow number
5: UpdateRegIntervalseq(+1) ▷ Update the interval sequence
6: else
7: Hnew← Hash(Packet5Tuple, Intervalseq) ▷ Derive

flow hash from packet 5-tuple and interval sequence
8: Sid← Hnew[IndexSize : 0] ▷ Derive storage index
9: Hold ← Read&UpdateRegBitmap(Sid,Hnew) ▷ Get the

old hash value from the bitmap and set the new value
10: if Hnew! = Hold then ▷ New flow is detected
11: UpdateRegnnow(+1)

12: FNum←MAX(nlast ,nnow)
13: Prob← ReadTablePRED(q,FNum)
14: if Prob > Random() then
15: MarkECN(P)

table’s key is the queue length and the flow number, and the
table’s value is the marking probability. After obtaining the
marking probability, PRED compares it with the random value.
If the marking probability is greater than the random value,
ECN labeling will be tagged (lines 14-15).

Packet Buffer Module. The packet buffer module provides
some queue information to the control plane, including q̄ and
R. R can be obtained directly from switch statistics. The in-
stantaneous queue length cannot match the performance of
the switch. Therefore, PRED samples the queue length multi-
ple times, sum it and saves it in the register. The control plane
can read the register to get the sum value and the sampling
times to infer the average queue length.

C.2 Control Plane Modification

The QLA module needs at least 6 additional stages in the
Tofino switch if it is to be deployed in the data plane. We have
implemented PRED where both QLA and FCS are deployed
on the data plane, but a total of 17 stages are needed. In
§ 4.2, we introduced that the QLA module needs to save four
utility function values to judge the adjustment of λQLA. These
operations require at least 3 stages, two for reading/writing
the register and one for comparison operation. Since the RED
table requires additional Key entries to identify the λQLA, the
additional stages need at least 3 stages. For pure FCS modules,
11 stages have been used, so the existing Tofino switches do
not support deploying both modules to the data plane at the
same time. However, the new Tofino 2 and Tofino 3 switches
support 20 stages [24], so the QLA and FCS modules can be
deployed in the data plane at the same time.

In this paper, we deploy the QLA module on the control
plane. The Monitor Module subscribes raw data from the

5 10 15 20
Concurrent Flows (N)

0

20

40

60

80

Av
g

Qu
eu

e
Le

ng
th

 (K
B)

RED(λ=0.2)
RED(λ=2)
PRED

5 10 15 20
Concurrent Flows (N)

0

50

100

150

200

99
th

 Q
ue

ue
 L

en
gt

h
(K

B)

(a) Different flow concurrency levels

0 10 20 30 40
Time (ms) N=2

0
5

10
15
20
25

Qu
eu

e
Le

ng
th

 (K
B) RED(λ=0.2)

RED(λ=2)
PRED

0 10 20 30 40
Time (ms) N=20

0
20
40
60
80

100

Qu
eu

e
Le

ng
th

 (K
B)

(b) Breakdown

Figure 21: [Simulation] PRED performance with DCQCN.

0.2 0.4 0.6 0.8
Load

(a) AVG FCT

1

2

3

4

No
rm

al
ize

d
FC

T PRED
CODEL
ECNSharp
ECN

0.2 0.4 0.6 0.8
Load

(b) Large Flow AVG FCT[>1M]

1

2

3

4
PRED
CODEL
ECNSharp
ECN

0.2 0.4 0.6 0.8
Load

(c) Small Flow AVG FCT[<100K]

1

2

3

4
PRED
CODEL
ECNSharp
ECN

0.2 0.4 0.6 0.8
Load

(d) Small Flow 99th FCT[<100K]

1

2

3

4
PRED
CODEL
ECNSharp
ECN

Figure 22: [Simulation] FCT statistics with different ECN algorithm. All are normalized to the results achieved by PRED
(DataMining Workload).

Register for features analysis, including the total bytes sent
and egress queue depth. In detail, at each time interval TQLA,
the Monitor Module achieves the subscribed data from for-
warding chips’s registers. Then, the utility function calculates
the current utility value and passes it to the Decision Maker.
The control module makes a judgment every 4 intervals TQLA
and sets the new RED setting to the data plane.

Discussion. There is a problem with implementing the QLA
module in the control plane. Reading the register in the control
plane takes 5 to 12 ms, and updating the Red table takes 80
to 110 ms. Therefore TQLA is at least 200 ms due to hardware
limitations. We discuss the setting of TQLA in § D.5. The
larger TQLA is, the slower convergence will be. Therefore, if
the implementation is upon Tofino 1, PRED has a slower
convergence rate. However, we believe that if implemented
upon Tofino 2 or Tofino 3, this problem would not occur.

D Additional Simulation Results

D.1 PRED with DCQCN
Setup: We use a simple 20-to-1 topology with 40 Gbps links,
20 servers are senders, and 1 receiver. The latency of the link
is 2 µs. The parameters are set as suggested in [5, 27]. The
NS-3 simulation implementation of DCQCN refers to the
implementation in [27].
Results: Figure 21 shows the PRED performance with DC-
QCN. Figure 21(a) shows the average queue length and 99th
queue length as N increases. The queue length for both RED
(0.2) and RED (2) increases with N, and PRED avoids this

problem. Figure 21(b) shows the time sequence diagram
when N=2 and N=20. PRED at low concurrency (N=2), queue
length changes close to RED (0.2) to ensure throughput. At
high concurrency (N=20), PRED is close to RED (2) to ensure
low latency. To sum up, PRED can also cooperate well with
DCQCN.

D.2 Large Sacle Simulation in DataMing work-
load

Figure 22 is the result under the DataMining workload. For
details, refer to § 6.3.1. As shown in Figure 22, PRED’ small
flow 99th FCT (0.76 ms) has a reduction ranging from 58%
(ECNSharp, 1.83 ms) to 86% (CODEL, 5.28 ms) compared
to ECN algorithms at 90% load. For Large flows, there was
a negligible increase in the FCT of PRED (44 ms) ranging
from 6.3% (ECN, 41.36 ms) to 8% (ECNsharp, 40 ms) com-
pared to ECN algorithms at 90% load. This proves that PRED
can outperform other ECN algorithms under the DataMining
workload.

D.3 100 Gbps Large Sacle Simulation in Web-
Search workload

Figure 23 is the result under the WebSearch workload. For
details, refer to § 6.3.4. As shown in Figure 23, PRED’ small
flow 99th FCT (142 µs) has a reduction ranging from 27%
(RED, 171 µs) to 59% (CODEL, 350 µs) at 80% load. PRED’
small flow average FCT (29 µs) has a reduction ranging from
52% (RED, 61 µs) to 75% (CODEL, 117 µs) at 80% load.

50% Load
0

100

200

FC
T

(u
s)

PRED
RED
CODEL
ECNSharp

80% Load
0

100

200

300
99th
avg

Figure 23: [Simulation] Small Flow FCT statistics with
WebSearch workload.

0 200 400 600 800
Time (ms)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

flow 0
flow 1
flow 2

(a) Flow throughput

1 2 3 4 5
FCT (ms)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

ECNSharp
PRED
TCN

(b) FCT of small flows

Figure 24: [Simulations] PRED with packet schedulers.

This proves that PRED can outperform other ECN algorithms
in 100 Gbps with 1000s concurrent flows.

D.4 Packet Scheduler
Setup: We configure the switch with Deficit Weighted Round
Robin (DWRR) with 3 queues/services. The weights among
the 3 queues/services are 2: 1: 1. We first start a long-lived
TCP flow from sender 1 and classify this flow into queue/ser-
vice 1, then from sender 2 and classify it into queue/service 2,
and finally from sender 3 into queue/service 3. We also ran-
domly start small flows (the size is from 3 KB to 60 KB) from
the rest of the senders to probe the queue occupancies. We
set the TCN marking threshold to 150 µs to avoid throughput
loss. The other settings are identical to §6.3.1.
Results: Figure 24(a) shows the throughput of flows achieved
by PRED. We observe at the beginning that only queue 1 is
active, flow 1 achieves around 9.6 Gbps. After flow 2 starts,
queue 2 becomes active, and flow 1 achieves 6.42 Gbps while
flow 2 achieves 3.18 Gbps. Finally, when three queues all
become active, flow 1, flow 2 and flow 3 achieve around 4.82
Gbps, 2.40 Gbps and 2.40 Gbps goodput, respectively, which
strictly preserves the packet scheduling policy.

We also measure the FCT of small flows among all queues,
and the results are shown in Figure 24(b). PRED is similar to
ECNsharp and superior to TCN in small flow. In summary,
PRED can strictly preserve the packet scheduling policy with
multiple queues/classes.

D.5 Parameter Design Choice
We focus here on the two most important time parameters
TFCS and TQLA in PRED, and we will discuss the other param-
eters in future work. We analyzed how to set these in § 4, and

�� ��� ��� ��� ��� �	�
���������

�

	�

�
���
��
��

������ ����� ��
�� �����
Burst small

flows

Large flows
Different reset times

Figure 25: [Simulation] N Estimator of Different TFCS.
(RTT is 0.08 ms)

0 500 1000 1500 2000 2500 3000 3500
Time (ms)

0.0

0.5
0.2ms 0.4ms 0.6ms 0.8ms

load1Work
(3- KB)6

oad2Workl
(30-600KB)

oad1Workl
(3- KB)6

BetterBetterλ Q
LA

Figure 26: [Simulation] λQLA of Different TQLA.

we verified these by experiment in this section.
Setup: The topology, parameter settings, and traffic patterns
are all similar to the previous subsection.
Results: Figure 25 shows the estimation of flow number under
different TFCS. The burst state and the stationary state of the
large flows both have 18 flows. When burst flows and large
flows are concurrent, there should be 36 flows. From figure
25, when TFCS < RT T , PRED cannot accurately estimate the
correct N. Because all the traffic does not pass through the
port completely. When TFCS > RT T , PRED can estimate the
correct N, but with the increase of TFCS, the reset time of N is
also increasing. So TFCS should be slightly larger than RTT,
and our rule of thumb is 1.25RTT.

Figure 26 shows the convergence of λQLA for different
TQLA. The workload 1 (3-6 KB) ranges from 0 to 1,000 ms
and from 2,000 to 3,000 ms. Workload 2 (30-600 KB) is
1,000-2,000 ms. In workload 1, all flows are small, so the
smaller the λ, the smaller the FCT. Therefore, it can be seen
that PRED can rapidly reduce λ when 0-500 ms, while it can
rapidly increase λ when 1,000 ms. And the smaller TQLA is,
the faster it converges, but the more unstable. Therefore, TQLA
is recommended to be 5RTT.

D.6 Range of PRED Adjustment Capabilities

We tested the range of PRED adjustment capabilities using
Testbed. As shown in Figure 27, the throughput and queue
length change with the number of concurrent N. The blue line
indicates the parameter setting with the minimum λ and the
lowest ECN probability, and we can see that its queue length
is large and its throughput is high.

The red line indicates the parameter setting with the maxi-
mum λ and the maximum ECN marking probability. It can
be seen that when N < 32, there is a loss in throughput and

2 8 32 128
Concurrent Flows (N)

2.5

5.0

7.5

Th
ro

ug
hp

ut
 (G

bp
s)

Max
Min
Theoretical limit

2 8 32 128
Concurrent Flows (N)

0

2000

4000

6000

Qu
eu

e
Le

ng
th

 (K
B)

Figure 27: [Testbed] Range of PRED adjustment capabili-
ties.

the queue length is small. When N > 32, the parameter Set-
tings in the adjustment range cannot limit the stability of the
queue. This means that PRED limits the number of concur-
rent requests to no more than 32 within the range of optional
parameters. However, in practice, there are not that many
concurrent long flows in the datacenter [3], and the range of
PRED is sufficient.

The black line represents per-packet ECN, that is, every
packet that enters the switch is marked with an ECN. It can
be seen that the adjustment range of the black line is very
large. However, the adjustment granularity is too large, and the
change of very small parameters will lead to drastic changes
in the queue and throughput, so the adjustment range of PRED
is only between the red line and the blue line.

	Introduction
	Background
	The Form of RED Setting: Two-point Turns to Point-slope
	The Essence of RED Setting: Controlling the Steady-state Queue Length

	Motivation
	RED Requires Traffic Awareness
	Our Goals: Traffic Awareness and Stability

	Design
	Flow Concurrent Stabilizer
	Queue Length Adjuster
	Discussion

	Implementation
	Evaluation
	Methodology
	Testbed Experiments
	Simulation Experiments
	Large Scale Simulations
	PRED Microscopic View
	Compared with ACC
	100 Gbps with 1000s Concurrent Flows
	Comparison of PRED and HPCC
	Packet Scheduler and Parameter Design Choice

	Related Work
	Conclusion
	Problem Formulation
	Additional Discussion
	Additional Implementation
	Data Plane Modification
	Control Plane Modification

	Additional Simulation Results
	PRED with DCQCN
	Large Sacle Simulation in DataMing workload
	100 Gbps Large Sacle Simulation in WebSearch workload
	Packet Scheduler
	Parameter Design Choice
	Range of PRED Adjustment Capabilities

