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Abstract—Dynamic prices are used in many scenarios, e.g., flight
ticketing, hotel room booking and ride-on-demand (RoD) service
such as Uber and DiDi, and while they are beneficial for service
providers, practitioners or users, they lead to the concern of privacy
leakage – the possibility of learning user information from dynamic
prices. In this paper, we aim to study this possibility and choose
trip purpose mining in RoD service as an attack example, based
on real-world large datasets. We discuss the criteria of choosing
datasets – ubiquitous, collective and easily accessible – from the
perspective of an attacker, and extract features describing trip
information, spatio-temporal and dynamic prices context. The trip
purpose mining problem is then solved as a multi-class classification
problem and multiple binary-class problems. In the multi-class
problem, we verify that dynamic prices information results in
a 17.1% improvement in classification accuracy; in the binary-
class problems, we quantify feature contributions and explain the
different extents of privacy leakage in identifying different trip
purposes. Our hope is that the study not only serves as a case study
demonstrating the privacy leakage problem in RoD service, but
also sheds light on such privacy problem in other services using
dynamic prices and triggers more research efforts.

Index Terms—Dynamic prices, privacy, trip purpose, urban
transportation.

I. INTRODUCTION

DYNAMIC prices, in various forms, have been widely
applied in different scenarios. For example, prices of flight

tickets may fluctuate based on supply, demand, and the time of
buying a ticket; hotel room prices may be dependent on holiday
seasons, room availability, and the time of creating an order. In
ride-on-demand (RoD) services, such as Uber and DiDi, surge
pricing, or dynamic pricing, mechanisms are used to determine

Manuscript received 7 May 2023; revised 24 April 2024; accepted 28 May
2024. Date of publication 3 June 2024; date of current version 5 November 2024.
This work was supported by Guangdong Basic and Applied Basic Research
Foundation under Grant 2024A1515012094, in part by the National Natural
Science Foundation of China under Grant 62002135, Grant 62322601, Grant
62425201, and Grant 62172066, and by the Excellent Youth Foundation of
Chongqing under Grant CSTB2023NSCQJQX0025. Recommended for accep-
tance by S. K. Das. (Corresponding author: Chao Chen.)

Suiming Guo and Zhetao Li are with the College of Information Science
and Technology, Jinan University, Guangzhou 510632, China (e-mail: guosuim-
ing@email.jnu.edu.cn; liztchina@hotmail.com).

Chao Chen and Chengwu Liao are with Chongqing University, Chongqing
400044, China (e-mail: cschaochen@cqu.edu.cn; lcw@cqu.edu.cn).

Yaxiao Liu and Ke Xu are with Tsinghua University, Beijing 100084, China
(e-mail: rootliu@gmail.com; xuke@mail.tsinghua.edu.cn).

Daqing Zhang is with Institut Mines-Telecom/Telecom SudPais, 91000 Paris,
France (e-mail: daqing.zhang@telecom-sudparis.eu).

Digital Object Identifier 10.1109/TMC.2024.3408419

the prices of each trip based on the supply and demand on the
road [1], [2].

The introduction of dynamic prices brings benefits to service
providers, practitioners, and users. The service provider could
design pricing policies or algorithms for profit maximization.
A user could choose an appropriate time to find an affordable
price by observing how dynamic prices change over time; s/he
could also take advantage of dynamic prices and get timely or
better service if the user is in a hurry [3]. For practitioners, e.g.,
a driver in RoD service, it is possible to rank seeking locations
based on dynamic prices so as to earn more [4], [5], [6].

Despite these benefits, dynamic prices lead to privacy leakage
to a certain extent. Intuitively, business or family travellers may
order hotel rooms or buy flight tickets at different times, due
to different levels of price sensitiveness. In RoD service, one
going to work in the morning rush hour may not care about
dynamic prices because s/he could not be late; but a city traveller,
even at the same time and location, may change travel plan
or take a trip later to get a lower price. Hence, an order with
a high dynamic price during morning rush hours has a high
possibility belonging to a commuter, whereas an order with
a lower dynamic price that happens later is more probable to
be from a traveller. Therefore, it is possible that by observing
the change of dynamic prices among orders, an attacker could
violate user privacy and learn more information such as user
identity, demographic characteristics, or trip purpose.

Motivated by the concern of privacy leakage, in this paper
we aim to reveal the possibility of capturing privacy-related
information from dynamic prices. Specifically, we choose trip
purpose in RoD service as the target. Trip purpose is a vital user
privacy because by mining and understanding it, an attacker is
able to conduct some misbehaviors or even crimes, which are
roughly divided as mild and severe attacks below:
� Mild attacks usually involve targeted advertisement or

service/product recommendation and may not cause severe
privacy violation or monetary loss. For example, if an at-
tacker concludes that passengers heading towards specific
regions during weekends are mostly going shopping, then
it is possible to recommend products, coupons or shops
to them. Our results of trip purpose mining should be
applicable to this type of attacks.

� Severe attacks go further and usually violate the privacy
of particular passengers(s). Examples include tracking and
stalking – i.e., monitoring or following particular passen-
ger(s) – with trip purpose, one could guess the commuting
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routes, the time of commuting, weekend destinations, fam-
ily address, living habit, etc. Severe attacks may even cause
monetary loss, e.g., a guess of family address may lead to
stealing, robbing, etc. To conduct severe attacks, it maybe
necessary to associate trip purpose with particular passen-
gers, and thus techniques such as trajectory-user linking,
which are not in the scope of this paper, are preferred.

Our study plays a role in two sides of privacy preservation. On
one hand, we study such possibility, and inform attackers that
dynamic prices indeed help them learn more information about
trip purpose. On the other hand, the study on privacy leakage
from dynamic prices is rare, and our work could thus alarm
the privacy leakage problem in similar scenarios (e.g., RoD
service, hotel room pricing, flight ticket pricing, etc.), triggering
more efforts in designing proper privacy-preserving mecha-
nisms.

From the perspective of an attacker, the methodology of trip
purpose mining is different from previous work. A typical way
of trip purpose mining usually involves a specific group of
users, and by collecting their trip preferences, household in-
formation or demographic characteristics through travel survey
or questionnaire, trip purposes of users belonging to this group
could be inferred. For an attacker, such datasets or informa-
tion is generally inaccessible, and it is also difficult to infer
preferences based on data from only a small group of users.
Instead, an attacker pays attention to all users, and attempts
to mine trip purpose based on ubiquitous and easily-accessible
datasets. Datasets fulfilling such requirements are either public
data about, for example, city map, city planning, survey on
a large population, or ubiquitous datasets such as trip order,
GPS trajectories that are easily accessible and not targeted to
individual or small groups of users. In our study, we choose trip
order datasets from real RoD service with dynamic prices. We
also crawl POI and public transportation data from online map
service.

We aim to answer the following two questions:
� Q1: Do dynamic prices help an attacker in trip purpose

mining?
� Q2: What features are quantitatively more important in trip

purpose mining?
These two questions basically address the privacy leakage

problem qualitatively and quantitatively, respectively. To answer
Q1, we extract features from our datasets to describe trip in-
formation, and to augment the spatial, temporal and dynamic
prices context of each trip. We then build an artificial neural
network (ANN) model to fuse all these features to perform trip
purpose mining. We not only show that it is possible to achieve
a satisfactory and convincing accuracy with basic datasets and a
simple algorithm, but also, more importantly, prove that consid-
ering features related to dynamic prices leads to a significant
accuracy improvement. To answer Q2, we resort to a linear
model to fuse these features, so that we could quantify and
rank the contribution of different features in trip purpose mining.
For the linear model, we also use feature crossing to compensate
for the lack of non-linearity. To make sure that our linear model
corresponding to Q2 provides an high enough accuracy, the
ANN model corresponding to Q1 also serves as a baseline.

Our contributions are three-fold:
� To the best of our knowledge, we are the first to investigate

the privacy leakage from dynamic prices based on real large
datasets in RoD service. Though we choose trip purpose
mining as an attack example, a lot of other services or
scenarios involve dynamic prices in various forms. We
hope our study could shed light on such privacy problem
and trigger more research efforts.

� We design a simple but effective attack methodology for
attackers to find out trip purpose of any user in RoD service,
including:
� We state clearly the datasets needed, and the possible

ways to obtain them, from an attacker’s perspective. It
is thus feasible for an attacker to conduct trip purpose
mining attack, and our discussions on privacy leakage
from dynamic prices become convincing and tenable.

� We not only confirm the existence of privacy leakage
from dynamic prices, but also give quantitative evalua-
tions of the impacts from different features on various
trip purposes. Even the privacy leakage from dynamic
prices is rarely studied, let alone the quantitative anal-
ysis. Our results are the first, as we know, to give the
extent of privacy leakage for different trip purposes.

� We train our models and conduct extensive experiments
based on real service datasets. On one hand, our datasets
are from real service, and contain information such as trip
purpose labels and dynamic prices. On the other hand, real
service datasets guarantee that our results are tenable and
could be used in practice.

The remainder of the paper is organized as follows. We review
related work in Section II. In Section III we discuss the criteria of
choosing datasets and present our datasets in details. Section IV
shows the attack methodology for trip purpose mining. Evalua-
tion results and discussions on relevant problems are presented
in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

RoD Service with Dynamic Prices. RoD service, also known
as on-demand ride-hailing, ridesourcing, or transportation net-
work company (TNC), is a relatively new transportation service
compared to taxi. There are indeed subtle differences between
these terminologies, but we do not go into details here. There
are much fewer studies on this new service, many of which
compare it with other public transportation services such as
taxi from a number of perspectives. For example, [7], [8], [9]
discuss the changes of market share of taxi, Uber or other public
transportation services before and after Uber’s entrance. [10]
studies users’ choices and preferences between ridesourcing and
taxi. [11] claims that Uber can reduce passenger waiting time sig-
nificantly. [12] studies the effects of TNC on traffic congestion.
[13] compares Uber with taxi service spatio-temporally. [14],
[15] pay attention to the market effects of Uber’s entrance. [16]
gives a comprehensive review of the studies on demand and
pricing, supply and incentives, platform operations, competition,
as well as impacts and regulations in ridesourcing. [17] also
reviews the studies on the relationship between taxi (and public
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transit) and ridesourcing, demographics and spatial context,
regulation, and etc.

Dynamic pricing is a key feature of RoD service that distin-
guishes it from taxi service, and there are studies on the design
of pricing schemes, the effects of dynamic prices, as well as new
applications built on dynamic prices. [18] studies the modelling
and pricing in ride-sourcing. [19] designs a reward scheme inte-
grated with dynamic pricing and studies passenger utility, driver
income and platform revenue under such scheme. [20], [21], [22]
focus on the effects in reducing passenger waiting time, balanc-
ing the supply and demand, and increasing driver revenue. [2]
mines data from Uber and evaluates its surge pricing mechanism,
by simulating app users on key locations. The authors in [1], [3],
[4], [6], [23] study the demand, the effects of dynamic pricing,
passengers’ reaction to prices, dynamic price prediction, drivers’
seeking strategies, and seeking route recommendation, based
on real-world data. Other studies analyze RoD service from
economic perspectives on topics such as supply response [24],
supply elasticity [25], [26], customer retention [27] or consumer
surplus [28].

Privacy Issues from Dynamic Prices. For traditional public
transportation services such as taxi or bus, dynamic pricing
mechanisms are not used so there is not any privacy issue gen-
erated from dynamic prices. For RoD service, there is currently
not any study on this topic.

For smart meters used in recording electricity usage by power
utilities, different forms of dynamic prices are used to ma-
nipulate the electricity usage. Privacy issues appear as people
worry that the smart meter readings make it possible to infer
electricity usage, guess family lifestyle, etc. [29] designs a
privacy-preserving service outsourcing scheme when the power
utility outsources the dynamic pricing determination to third
parties. [30] proposes battery-based methods to flatten smart
meter readings so that privacy could be preserved. [31] preserves
privacy in real-time smart metering data based on the concept
of differential privacy.

Privacy-preserving pricing schemes are also studied. In retail
industry, for example, [32] proposes a theoretical pricing scheme
based on differential privacy to prevent a third party agent from
inferring personalized information and purchase decisions from
price changes.

Trip Purpose Mining. Human mobility always shows regular
patterns [33], [34], and by studying these patterns, it is reason-
able and realistic to study social dynamics and personal travel
behavior [35], [36], [37], [38], [39], [40]. Trip purpose mining
is one of the many categories of study under travel behavior
analysis.

There are a number of previous studies on trip purpose mining,
inference or imputation. [41] gives a comprehensive survey
on the related work on trip purpose imputation. Trip purpose
mining studies could be roughly divided into two categories. The
first category relies on surveys or questionnaires, and extracts
trip preferences of a specific group of users to perform trip
purpose mining. These studies are targeted to a small group
of people and thus may have a higher accuracy, but they have
the disadvantage that it is infeasible for an attacker to collect
such data. For example, [42] uses online web-based diary and

their dataset covers 260 participants; [43] is based on social
media data and mail-based diary and studies the data from about
40,000 households; [44] chooses social network data and travel
household survey; [45] uses smartphone-based travel surveys,
etc.

The second category is based on large-scale datasets that
do not contain individual preference information, such as GPS
trajectories of taxis. These studies are generally less accurate
due to the lack of passenger-specific data and a larger coverage
of population, time periods, or locations. For example, [46] uses
an unsupervised learning model to cluster trajectories of similar
trip purpose; [47] uses a semi-supervised deep graph embedding
framework; and [48] uses a probabilistic model. [49] uses a
dual-attention graph embedding network to conduct trip purpose
mining based on taxi GPS trajectories and text description of
destinations.

Another relevant field of study related is raw mobility an-
notation. These studies usually first find out stays among a
human mobility trace, and then associate each stay with a POI
that people are most likely to visit during that stay. In other
words, a mobility trace is annotated with POIs. For example, [50]
considers basic POI attributes and POI-visit histories; [51] fur-
ther uses Markov models to consider POI-visit histories; [52]
fuses information from social media to conduct raw mobility
annotation; and [53] fuses multiple context factors with a neural
network. Raw mobility annotation is related to trip purpose
mining because if important POI visits are determined, then it
is possible to infer the corresponding trip purpose.

Compared to all the related work listed above, our work
focuses on the existence of privacy leakage, instead of privacy-
preserving mechanisms or pricing algorithms. We choose a
concrete example, i.e., trip purpose, as the target of study, and
use real service data to show the privacy leakage from dynamic
prices. Furthermore, we also quantify feature contributions –
what features about dynamic prices lead to privacy leakage and
by how much – by using suitable machine learning models.

III. DATASETS AND PREPROCESSING

Datasets used by attackers should be different from the
datasets used by previous work on trip purpose mining. Tradi-
tionally, a typical way involves gathering a group of people (e.g.,
students or volunteers), collecting their mobility data (such as
trip orders or GPS trajectories), recording their trip purposes
as ground truths, modelling mobility preferences of this small
group of people by taking surveys or questionnaires, and finally
building a model of trip purpose mining. Because of modelling
mobility preferences specifically to a small group of people, the
derived model is not suitable to a larger population.

Such datasets are also infeasible for an attacker. Firstly, an
attacker is not able to gather a group of people and collect
individual and private data. Secondly, an attacker pays attention
to all passengers – mining the trip purpose of any passenger,
given a trained model and the mobility data of this passenger,
instead of mining the trip purpose of any passenger in a small
group with specific preferences.
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TABLE I
A SUMMARY OF OUR DATASETS AND PRE-PROCESSING

Based on the above discussions, datasets for an attacker should
have the following characteristics:
� Ubiquitous: these datasets should be generated by ubiq-

uitous devices or from ubiquitous behavior. For example,
GPS trajectories or trip order datasets satisfy this require-
ment. On the contrary, surveys or questionnaires manually
created by hands are not desirable.

� Collective, not Individual: these datasets should cover all
passengers, instead of individuals or a small group of pas-
sengers. In other words, we treat all passengers as equals,
and do not consider any personal preference. Hence, if two
passengers get on and off cars at exactly the same locations
and times, they should have the same trip purpose.

� Easily accessible: these datasets should be easily accessi-
ble for an attacker. For example, they should be open or
public data, or could be approximated by open or public
data, or could be collected by means of, say, crowdsourc-
ing.

These characteristics not only facilitate trip purpose mining
for an attacker, but also improve the applicability of our study,
so that our results are meaningful and could be applied to similar
services.

Below we introduce our datasets in details, and Table I sum-
marizes our datasets and pre-processing.

A. Trip Order Dataset

The trip order dataset is widely used in mobility-related
studies. This dataset describes the origin-destination information
(i.e., OD pair) of each order in a RoD service. For each order,
we use a spatio-temporal point po = (lngo, lato, to) to represent
the origin of an order, with lngo, lato and to as the longitude,
latitude, and time that an order starts with. Similarly, the spatio-
temporal point pd = (lngd, latd, td) represents the destination
of and order. In addition, for the order destination, there is a text
description descd that gives out the context of the destination.
So < po, pd, descd > presents all relevant information of a trip
order. We show an example of lngd, latd and descd below:

lngd = 116.59318, latd = 40.07919,

descd = ′′Terminal 2 of Beijing International Airport′′. (1)

The extra text description of destination, descd, comes from
the mobile app in RoD service. In a RoD service such as Uber
and DiDi, the passenger uses a mobile app to request for service:

TABLE II
POI CATEGORIES AND THEIR CORRESPONDING TRIP PURPOSES ACCORDING TO

THE CHECK-IN DATASET

typing an origin and a destination in text, getting an estimate of
the trip fare, and pressing a button to finally create an order [23].
The mobile app automatically transforms the origin and desti-
nation from text descriptions to longitudes and latitudes. This is
different from the way of hailing a taxi, where no mobile app is
involved, and the exact origin and destination locations, only in
the form of longitude and latitude, are recorded by on-car GPS
devices.

The extra text description of destination enables us to generate
a trip purpose label for each order, which is used as ground-truth
in our model training and evaluation. This is impossible in
studies on traditional taxi services based on GPS trajectories,
in which ground-truth is usually obtained with the help of other
auxiliary datasets such as travel diary, household survey, social
network data, etc. As the auxiliary datasets may not cover the
same locations or time periods as the GPS trajectories do, the
ground-truth is inevitably inaccurate. By comparison, in our
paper, the text description of destination is from the exactly same
dataset, making it possible to extract more semantic information
and generate the ground-truth more accurately.

Generating the ground-truth based on the text description
of destination is not trivial. It should firstly be noted that this
is auxiliary and does not belong to the attack methodology in
Section IV. The trip purpose label is generated with the help from
another location-based social network (LBSN) check-in dataset.
This dataset is from Jiepang [54], and provides 510,000 text
samples with information about POI descriptions and the cor-
responding POI categories in Beijing. In this check-in dataset,
POIs in Beijing are divided into 9 categories, and each POI
category is associated with one trip purpose, as shown in Table II.
Specifically, the trip purpose label, denoted by a, is generated
by a two-stage mapping operation:
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� The first stage maps the text description to a POI category,
e.g., from “Terminal 2 of Beijing International Airport”
to “Transportation Facilities”. This is done by using a
pre-trained NLP model (i.e., ERNIE from PaddlePaddle,
https://github.com/PaddlePaddle/ERNIE/tree/repro), fine-
tuned with the above-mentioned check-in dataset. This
model is used in [49] to perform similar trip purpose
mapping operation, and is also used in other scenarios
such as financial risk control, video recommendation and
advertising [55]. Based on our trip order dataset, we man-
ually transform the destination to POI categories of 1000
randomly chosen orders, and compare these POI categories
with the NLP model’s results. It is shown that the average
mapping accuracy of this NLP model is around 99.3%.

� The second stage maps a POI category to a trip purpose,
e.g., from “Transportation Facilities” to “Transportation”.
This mapping could be accomplished by using Table II.

To sum up, each order in our trip order dataset contains a four
element tuple < po, pd, descd, a >, and the trip purpose label a
is derived based on descd. In the tuple, only po and pd are used
in trip purpose mining, while a is used as the ground truth in
evaluation. The trip order dataset is from Shenzhou UCar (https:
//bit.ly/2MG47xz), a major RoD service provider in China. The
dataset contains 759,033 orders in Beijing during December,
2015.

B. Dynamic Prices Dataset

A typical and most widely used form of dynamic pricing
in RoD service is the multiplicative form: the fare of a trip is
the product of a dynamic price multiplier (based on the supply
and demand) and a fixed normal price (based on trip time and
distance) [1], [23].

The dynamic prices dataset we use is the event-log dataset
from Shenzhou UCar. When one types the origin and destination
on the mobile app, the app sends back all the information
to the service provider, triggering an EstimateFee event. The
service provider then replies a record containing the event time,
event location, estimated trip fare, price multiplier, user ID, etc.
Finally, the app displays the price multiplier and estimated trip
fare. The dataset contains 3,646,357 entries in Beijing during
December, 2015, and all are properly anonymized.

The dynamic price multiplier recorded in the event-log dataset
is different from the multiplier associated with an order. One may
use the mobile app to estimate the trip fare for multiple times
before finally giving up or creating an order, because s/he is not
satisfied with the current price and thus hesitates. Therefore, the
number of entries in the event-log dataset is much higher than
that in our trip order dataset, and the event-logs give a description
of the changes of dynamic prices at a finer granularity. On the
down side, it may become inaccurate if we need to associate a
price multiplier with an order.

To associate a price multiplier with an order, we pre-process
the dataset by calculating the average price multiplier. We first
divide the map of Beijing into rectangular cells of 0.02 longitude
by 0.02 latitude. The map of Beijing chosen in our paper is a
rectangle ranging from 116.1 to 116.8 (east) in longitude and

from 39.7 to 40.2 (north) in latitude. We thus have 875 cells
in total. We could then calculate the average dynamic price
multiplier based on all EstimateFee events taking place in each
cell during every hour.

Using the average price multiplier in a particular cell during
one hour may not be accurate enough, compared to using the
price multiplier associated with an order, but it has the following
advantages:
� The average price multiplier is easier to obtain for an

attacker. The accurate price multiplier would be inaccessi-
ble without compromising service provider’s database or
collaborating with the service provider. The average price
multiplier, by comparison, could be obtained or approxi-
mated by crowdsourcing or simply reading on the driver’s
app in RoD service [6]. Further discussions are provided
in Section V-D.

� Using the average price multiplier avoids over-fitting. Un-
der some circumstances the accurate price multiplier of an
order may be an outlier, due to sudden unplanned events,
bad weather, etc., and may lead to model over-fitting. Using
the average price multiplier helps eliminate outliers.

C. POI Data

We use datasets about POIs to characterize the origin and
destination locations of trip orders. We crawl the POI data from
AMap service (one of the most popular on-line map service
providers in China) using its API [56]. AMap categories each
POI into 14 coarse categories: car service, restaurant, shopping,
sports & entertainment, hospital, hotel, scenic spot, business &
residential building, government, education & culture, trans-
portation facility, finance & insurance, business and lifestyle.
For a location given in a trip order, we count the number of
POIs of each of these 14 categories within a 500-meter radius
of the location, and use the resulting vector as our POI data.
Hence, for each order in the trip order dataset, we obtain two
14-element vectors, denoted by POIo and POId for the origin
and destination respectively.

D. Bus & Metro Distribution Data

We use this dataset to describe the distribution of public
transportation services around a location, and choose bus and
metro as two examples. Such distribution helps to characterize
the availability of public transportation nearby, which may have
an impact on trip purpose mining.

The most accurate description of bus and metro distribution
should be dynamic and in real-time, e.g., “the number of buses
passing by during a particular time period”, which could be
obtained by, for example, examining the smart-card usage data
or the GPS trajectories of bus and metro. However, this is
hard for an attacker to obtain. Considering the fact that public
transportation services usually have fixed time tables, and that
most people decide whether to take public transportation based
on the availability of bus & metro stations or lines nearby, instead
of the availability of buses or trains nearby, we thus turn to public
datasets, which are easily accessible for an attacker.
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Fig. 1. Threat model: attacker’s knowledge and goal.

We acquire our data also from AMap service, similar to our
POI data. Specifically, for a location given in an order, we count
the number of bus & metro lines and stations within a 500-meter
radius of the location. Hence, for each order in the trip order
dataset, we acquire two 4-element vectors, denoted by BMo

and BMd for the origin and destination respectively.

IV. ATTACK METHODOLOGY

We introduce an example of attack methodology of trip pur-
pose mining in RoD service. The models used in this example are
simple but effective. The goal is to show that dynamic prices lead
to privacy leakage: an attacker is able to obtain more accurate
results with the help of dynamic prices.

A. Threat Model

As shown in Fig. 1, the RoD service consists of some privacy-
conscious passengers, drivers and a service provider that is
responsible for the matching between drivers and passengers.
In our study, we focus on the privacy leakage on passengers,
and hence we do not specify if drivers are privacy-conscious
or if the service provider is honest or semi-honest here. The
attacker sits outside the RoD service, and performs two tasks,
namely, data collection and trip purpose mining. If the results of
trip purpose are accurate enough, then it is a potential privacy
threat to the privacy-conscious passengers.

Attacker’s knowledge: the attacker’s knowledge comes from
the data collection from two data sources: RoD service, and
the “outside world”. From RoD service, the attacker tries its
best to collect information about trip orders and dynamic prices.
“Outside world” refers to the world outside the RoD service,
and in our threat model the attacker could obtain public data
including POI data and bus & metro distribution data.

Attacker’s goal: the attacker’s goal is to find out the trip
purpose of any passenger, and this could be considered as a
violation of passenger privacy. Based on the attacker’s knowl-
edge obtained from RoD service and outside world, the attacker
performs trip purpose mining. This goal is well-motivated since,
as mentioned in Section I, the attacker is able to perform many
tasks such as intelligent advertising, recommending services

to passengers, tracking or stalking certain passengers, or even
causing monetary loss to passengers, as long as the trip purpose
mining results are accurate.

B. Problem Formulation

The problem of trip purpose mining could be viewed as
identifying the most likely trip purpose for every trip order based
on all the information from the above datasets. Specifically, it
is a classification problem, and if the accuracy of classification
improves significantly with the information of dynamic prices,
it is safe to claim that dynamic prices lead to privacy leakage and
make it easier for an attacker to mine trip purpose. The output
of the classification problem is one of the 9 trip purposes shown
in Table II. We use A to represent the set of 9 trip purposes:

A = {′′Recreation′′, ′′Outdoors′′, ′′Shopping′′, ′′Dining′′,
′′Education′′, ′′Transportation′′, ′′Homing′′, ′′Health′′,
′′Working′′}, or

A = {A1, A2, A3, . . ., A9}. (2)

We have the following definition of the trip purpose mining
problem:

Definition IV.1 (Trip Purpose Mining Problem). Given the
following information about a trip order based on the four
datasets:
� Trip’s origin and destination < po, pd >: the spatio-

temporal point with po = (lngo, lato, to) and pd =
(lngd, latd, td), representing the time and location of origin
and destination of a trip;

� The average dynamic price multiplier in any cell, any hour;
� POIo and POId: the vector of POI counts around origin

and destination of this order;
� BMo and BMd: the vector of the number of bus & metro

lines and stations.
Extract an input feature vector, denoted by �X , based on the

above information.
Predict p̂(y = ā| �X), ∀ā ∈ A: the probability of a candidate

trip purpose ā being the actual trip purpose y of this trip order,
with the input feature vector �X . The trip purpose with the largest
probability is the output of the classification problem – the mined
trip purpose of this order. �

To solve this problem, a model is trained to minimize the dif-
ference between the predicted probabilities p̂(y = ā| �X), ∀ā ∈
A and the ground truth, i.e., the trip purpose label a derived in
Section III-A.

C. Overview

Fig. 2 illustrates the framework of our methodology. It con-
sists of two stages, namely feature extraction and context aug-
mentation, and trip purpose mining attack.

Feature Extraction and Context Augmentation. We already
have some basic information from our four datasets, but they
are still not enough to describe the context of each trip order. In
this stage, we aggregate all the data, and augment the semantic
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Fig. 2. The framework of our attack methodology.

meaning of each trip order’s context, including the basic trip in-
formation, spatial, temporal, and dynamic prices context. These
contexts are then aggregated to form an input feature vector,
which is then fed into the models in trip purpose mining attack.

Trip Purpose Mining Attack. In this stage, we solve the
trip purpose mining problem defined in Definition IV.1 in two
different ways, namely, as a multi-class classification problem
and a binary-class classification problem (by transforming the
original multi-class problem using the one-vs.-all paradigm):
� In the multi-class classification problem, the input feature

is fed into an artificial neural network (ANN) model, whose
output is the probabilities being each of the 9 candidate trip
purposes.

� In the binary-class classification problem, the output is the
probabilities being one of the 9 candidate trip purposes
or not. We choose to use a linear model, namely, logistic
regression, in this problem. Before the input feature is fed
into the logistic regression model, it is pre-processed using
the feature crossing technique to compensate for the lack
of non-linearity in the linear model.

There are two reasons of adopting two models in trip purpose
mining attack:
� These two models answer Q1 and Q2 proposed in the In-

troduction, respectively. Specifically, the multi-class ANN
model answers Q1: the goal is to prove that dynamic prices
indeed help an attacker to conduct trip purpose mining at-
tack with a higher accuracy. The binary-class linear model
answers Q2, with the goal to further provide quantitative
explanation of feature contribution such as the impacts of
different features on the privacy leakage.

� The multi-class ANN model serves as a baseline to evaluate
the binary-class linear model. We use the linear model to
provide quantitative explanation, but there may be worries
that a linear model is not accurate enough due to the
lack of non-linearity. As is mentioned, the feature crossing
technique is used to improve the linear model’s accuracy,
and to show its effectiveness, we compare the performance
of our linear model with that of the multi-class ANN model.

D. Feature Extraction and Context Augmentation

Based on our datasets, we extract features to characterize each
trip order, so that these features could be fed into classification
models. There are generally two sorts of features: direct features
are obtained directly from our datasets, whereas indirect features
require some calculations from direct features.

According to the context a feature describes, we divide fea-
tures into 4 categories: basic trip information, spatial context,
temporal context, and dynamic prices context. The criteria of
choosing and calculating features is that features should be able
to reflect trip purpose from different perspectives.

1) Basic Trip Information: Basic trip information consists of
two features: travel timeTod and travel distanceDod. Calculating
Tod is straightforward, i.e., Tod = td − to, where td and to are
from pd and po in the trip order dataset. Travel distance Dod

is approximated by using the straight line distance between
the origin (lngo, lato) and destination (lngd, latd). The precise
travel distance should be based on GPS trajectories of cars, but
such dataset may be hard for an attacker to obtain, and we thus
use the approximated straight line distance instead.

2) Spatial Context: The spatial context tries to describe loca-
tion characteristics of the origin and destination, and it captures
information from POI and bus & metro distribution data:
� BMo andBMd: these are direct features from bus & metro

distribution data.
� POI counts vector POIo and POId: these are direct

features from POI data. We use POIoi(1 ≤ i ≤ 14) and
POIdi(1 ≤ i ≤ 14) to denote each element of POIo and
POId, respectively.

� POI uniqueness vector Uniqo and Uniqd: POI counts
vectors fail to take the uniqueness of different POI cate-
gories into consideration. For example, the reason why a
certain POI category has a higher count around a location
may be that this category is much more common in the
whole city. We turn to the TF-IDF statistics to characterize
the uniqueness of different POI categories. For the i-th
category, we use Ni to denote the total number of POIs of
the i-th category in the city; we use N to denote the total
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number of POIs in the city. Then, the TF-IDF of POI counts
of the i-th category could be written as:

Uniqoi = POIoi · log2

(
N

1 +Ni

)
,

Uniqdi = POIdi · log2
(

N

1 +Ni

)
. (3)

And the POI uniqueness vector, denoted as Uniqo and
Uniqd around the origin and destination, are lists of values
Uniqoi and Uniqdi(1 ≤ i ≤ 14), respectively. In this way,
different categories of POIs are not weighted equally - the
more common a category of POI is, the more its weight
is diminished. [23] shows the effectiveness of using the
TF-IDF statistics.

� POI distance vectorDisto andDistd: we use POI distance
vector to measure the minimum distance between each
POI category and the origin or destination, considering
that passengers may always want to go to the closest POI.
For the i-th category, we calculate the minimum distance
between any POI of this category and the origin or desti-
nation, denoted by, min_doi or min_ddi, and define:

Distoi = − log2

(
min_doi

500

)
,

Distdi = − log2

(
min_ddi

500

)
. (4)

Then, the POI distance vectors Disto and Distd are lists
of values Distoi and Distdi(1 ≤ i ≤ 14).

3) Temporal Context: The temporal context tries to augment
the semantic meaning of the time the order starts and ends. We
extract the following features:
� Day-of-week of the start time DWo: this feature describes

the day of week (e.g., Monday, Tuesday,..., Saturday and
Sunday). We choose to extract this feature because trip pur-
poses differ between different days of week, e.g., Monday
vs. Friday, weekdays vs. weekends, etc. We use one-hot
encoding to represent DWo as a 7-element vector, with
only one element being 1 and all other elements being 0.
For example, DWo = [1, 0, 0, 0, 0, 0, 0] means “Monday”.

� Timeslot of the start timeTSo and end timeTSd: instead of
using the hour-of-day feature to describe the start time and
end time, we introduce the concept of timeslot and describe
the start time and end time at a coarser granularity. We
divide one day into 4 timeslots of equal length: timeslot-0
to -3 refers to [4am, 10am), [10am, 4pm), [4pm, 10pm) and
[10pm, 4am), respectively. Roughly speaking, for week-
days, these timeslots correspond to morning rush hours,
non-rush hours around noon, evening rush hours, and night
hours; for weekends, the partition of timeslots still makes
sense, as [4] suggests that human activity remains relatively
high and stable during the day, and becomes lowered during
the rest of the day. [4] also claims that using 4-timeslot
division is already enough to capture the information in the
start and end time. Another advantage of using timeslot is
to reduce the dimensions of the input feature to avoid over-
fitting. Similar to DWo, we also use one-hot encoding to

represent TSo and TSd as 4-element vectors. For example,
TSo = [0, 1, 0, 0] means the start time of the order falls in
timeslot-1.

4) Dynamic Prices Context: As claimed by RoD service
providers, they design dynamic pricing algorithms based on the
real-time supply and demand condition on the road. If pricing
algorithms are robust and working, then we could view dynamic
prices as a perfect reflection of what is going on instantaneously.
Such reflection may be implicit, as pricing algorithms are, in
most cases, kept as secrets by service providers. We involve
dynamic prices context, based on dynamic prices dataset, into
our features, as an effort to study such implicit reflection.

We extract features based on the average price multiplier in
every cell, every hour. Here we use “origin cell” and “destination
cell” to represent the cell the origin and destination fall in. Also,
we use ho to denote the hour-of-day of to, and hd to denote the
hour-of-day of td. We involve the following features:
� The average dynamic price multiplier in the origin cell

during the hour ho − 1, ho and ho + 1, denoted asDPo,−1,
DPo,0 and DPo,+1, respectively. We also use a vector
representation DPo = (DPo,−1, DPo,0, DPo,+1) for con-
venience.

� The average dynamic price multiplier in the destination
cell during the hour hd − 1, hd and hd + 1, denoted as
DPd,−1, DPd,0 and DPd,+1, respectively. We also use
a vector representation DPd = (DPd,−1, DPd,0, DPd,+1)
for convenience.

5) The Input Feature Vector: Before creating the input fea-
ture vector, we perform normalization on the above features.
Normalization is necessary in models with multiple features,
to make the values of each feature covering roughly the same
range; otherwise, the models would become difficult to train or
converge. Features in the form of one-hot encoded vector do
not need normalization, as they have values of either 0 or 1.
For all other features, we calculate the Z-score (i.e., the number
of standard deviations from the mean, https://en.wikipedia.org/
wiki/Standard_score) of any value of each feature to normalize.

For each order, we then gather all the features, as summarized
in Table III, to form the input feature vector �X , which are then
fed into the models in Section IV-E:

�X = [Tod, Dod, BMo, BMd, POIo, POId, Uniqo, Uniqd,

Disto, Distd, DWo, TSo, TSd, DPo, DPd] (5)

E. Trip Purpose Mining Attack

With the input feature vector ready, the next task for an
attacker is to infer a trip purpose for this order. As mentioned
previously, we view the trip purpose mining attack problem as
a classification problem. We solve this problem as a multi-class
and as a binary-class classification problem.

1) Multi-Class Trip Purpose Mining: The multi-class trip
purpose mining problem is straightforward: identifying the best
suited candidate trip purpose out of the 9 candidate trip purposes
in (2). For each order, the ground truth y is the trip purpose
label a derived in Section III-A, and could be written in the
form of probabilities. If y = a = Aj , then the probabilities
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TABLE III
A SUMMARY OF FEATURES USED IN TRIP PURPOSE MINING ATTACK

pi(1 ≤ i ≤ 9) that y equals Ai are:

pi = p(y = Ai) =

{
0, if 1 ≤ i ≤ 9, i �= j
1, if i = j

(6)

For example, if the trip purpose label equals A2, then p2 = 1
and pi = 0 for all other i in the range [1,9].

We adopt a simple artificial neural network (ANN) model to
solve the classification problem. The feature vector �X is fed into
two hidden layers, producing output hidden states �H1 and �H2,
respectively:

�H1 = ReLU( �W1 · �X + �b1), (7)

�H2 = ReLU( �W2 · �H1 + �b2). (8)

In this model, the activation functions of both layers are the
ReLU function. ( �W1, �b1) and ( �W2, �b2) are the parameters to
learn in both layers. We also add a drop-out regularizer after the
first hidden layer to avoid over-fitting. Finally, the output of the
second hidden layer, �H2, is fed into a softmax layer with 9 units
to produce the output probabilities of 9 candidate trip purposes.
We use p̂i = p̂(y = Ai) to denote the output probabilities of the
softmax layer, then the inferred trip purpose, denoted by ŷ, is
the candidate trip purpose with the highest p̂i:

ŷ = argmax
i

p̂(y = Ai). (9)

The loss function of the ANN model is based on the cate-
gorical cross-entropy, which calculates the distance between the
predicted probabilities p̂i and ground truth probabilities pi:

LANN (ω) = −Σ
|A|
i=1pilog(p̂i) + λ2||ω||22 (10)

In (10), the first term is the categorical cross-entropy between pi
and p̂i, and the second term is a L2 regularizer. In the first term,
|A| is the number of candidate trip purposes and equals 9 in our
study; in the second term, ω is the set of all learnable parameters
in the model and λ2 is the regularization rate.

2) Binary-Class Trip Purpose Mining: In binary-class trip
purpose mining, we transform the multi-class classification
problem into 9 binary-class problems using the one-vs.all
paradigm. Instead of inferring the best suited candidate trip
purpose, each binary-class problem answers the question “Does
a trip order belong to one particular trip purpose or not?”.

We use a linear model, i.e., logistic regression, to perform
binary-class classification. The rationale behind solving binary-
class problems and using a linear model is:
� Binary-class problems make it possible to learn the dif-

ferent extents of privacy leakage from dynamic prices for
trips with different purposes. In other words, the accuracy
improvement of trip purpose mining may differ across trips
with different purposes. Intuitively, trips with “working”
purpose may be insensitive to dynamic prices because
people are in a hurry, whereas “homing” trips are more
sensitive to dynamic prices, as people go home at different
times and there is not a strict time limit. Hence, dynamic
prices features should contribute more in trip purpose
mining for trips with “homing” purpose, than trips with
“working” purpose.

� Using a linear model to tackle the binary-class problems
helps to quantify feature contributions. With the ANN
model used in Section IV-E-1, it is possible to check
whether the introduction of dynamic prices features im-
proves accuracy, but it is hard to determine which fea-
tures are more important and by how much. We use a
linear model in binary-class problems, because of its in-
terpretability.

Feature Crossing. A major drawback of linear models is the
lack of non-linearity, and a linear model thus fails to characterize
the correlation between features. To deal with this, a common
and widely-used technique is feature crossing, i.e., multiplying
two or more features. We use a very simple example to show
feature crossing. Assuming that we have two basic features
xa and xb, then a simple linear model could be expressed

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:17:53 UTC from IEEE Xplore.  Restrictions apply. 



GUO et al.: PRIVACY LEAKAGE FROM DYNAMIC PRICES: TRIP PURPOSE MINING AS AN EXAMPLE 12387

as y = ωaxa + ωbxb + b, where y is the predicted result, and
ωa, ωb, b are the learnable parameters. Feature crossing tries
to add a new feature xc = xaxb, and the linear model then
becomes y = ω′

axa + ω′
bxb + ω′

cxaxb + b′. This shows how
feature crossing adds non-linear terms into a linear model.

We can cross virtually any two features, denoted by xa and
xb without lost of generality, and in doing that, we may come
across three situations:
� Both features are scalars: the result of feature crossing is

also a scalar xc = xaxb.
� xa is a scalar, and �xb is a vector: the result is the product

of scalar-vector multiplication, i.e., �xc = xa �xb.
� Both features are vectors: if �xa = (xa1, xa2, . . ., xada

)
and �xb = (xb1, xb2, . . ., xbdb

) have a dimension of da
and db, respectively, then the resulting vector �xc has a
dimension of dc = dadb, and could be written as xc =
(xa1xb1, xa1xb2, . . ., xa1xbdb

, . . ., xada
xb1, xada

xb2, . . .,
xada

xbdb
).

In our practice, we perform feature crossing between any two
features in the input feature vector. In other words, we do not
manually choose only a subset of features to cross, based on the
following consideration. Firstly, crossing two features does not
make the resulting feature’s dimension prohibitively high, and
we do not need to consider avoiding over-fitting even we cross
every pair of features. Secondly, we could determine whether it
is necessary to cross a particular pair of features by inspecting
the corresponding weight in the trained linear model, and it is
unnecessary to make decision in advance.

We do not perform feature crossing between more than two
features for two reasons. Firstly, it is not intuitive enough to
understand the correlation between more than two features.
Secondly, feature crossing between more than two features
dramatically increases the dimension of the resulting feature
vector, and may lead to over-fitting.

The Logistic Regression Model. We denote the feature vector
after feature crossing as �XF , which is then fed into the logistic
regression model to solve the binary-class trip purpose mining
problem. In the logistic regression model, the output of the linear
model passes a sigmoid activation function, and a probability p̂
is generated. For the ground truth probability p, p = 1 if the
ground truth is the particular trip purpose, and p = 0 otherwise.
With the output probability p̂, we also have a hyper-parameter,
i.e., classification threshold pth, and define the output of the
classification problem ŷ as:

ŷ =

{
1, if p̂ ≥ pth,
0, otherwise.

(11)

The loss function is the binary cross-entropy, as a special case
of categorical cross-entropy loss function:

LLR(ω) = −(p · logp̂+ (1− p) · log(1− p̂)) + λ2||ω||22
(12)

In (12) the first term is the binary cross-entropy between p and
p̂, and the second term is a L2 regularizer. In the second term,
ω is the set of all learnable parameters in the logistic regression
model. Note that the set ω and the rate λ2 in (12) may not be the
same as in (10).

V. EVALUATION

In this section we evaluate the multi-class and the binary-class
trip purpose mining model. In each model, we make different
performance comparisons:
� For the multi-class model, we compare it with a state-of-

the-art that shares a similar setting – i.e., based on large-
scale datasets without individual preference information –
to show the effectiveness of our model.

� For the binary-class model, we use our multi-class model
as a baseline. As already mentioned in Section IV-C, we use
feature-crossing to compensate for the lack of non-linearity
in the linear model. So if the binary-class model achieves
a similar accuracy to that of the multi-class model, it is
then justified that the binary-class model gives convincing
results and could be used to evaluate the different extents
of privacy leakage under different trip purposes.

A. Experiment Setup

Evaluation metrics. To evaluate the performance of our ANN
and logistic regression models, we adopt some common metrics,
including accuracy, precision, recall and AUC. Specifically,
accuracy is the ratio of the number of correctly classified samples
to the total number of samples, and could be used in either
multi-class or binary-class classification problem. The other
three metrics are mainly used in binary-class problems. Precision
measures the proportion of positive identifications that are ac-
tually correct; recall measures the proportion of actual positives
that are identified correctly; and both precision and recall are
dependent on the classification threshold hyper-parameter in
binary classification. AUC, i.e., “Area Under the ROC Curve”,
is independent of classification threshold, and is usually used
as an aggregate measure to reflect the performance of binary
classifiers across all possible classification thresholds.

To use precision and recall in our multi-class problem, we
also employ the macro-average precision and macro-average
recall. In other words, we reduce the multi-class problem to 9
binary-class problems, and calculate the precision and recall for
each binary-class problem, and then average the results.

Parameters settings. In the multi-class problem, we tune the
ANN model, and our final model has 96 units in the first hidden
layer, and 448 units in the second hidden layer, with the drop-
out rate set to 0.1 in the drop-out regularization after the first
hidden layer. The L2 regularization rate is 0.0001. In training
the model, learning rate and batch size are set to 0.001 and
8,000, respectively, and the number of epochs is set to 300, as
we observe that the model could converge in less than 300 epochs
in most cases.

In the binary-class problem, the L2 regularization rate is also
set to 0.0001. In training the logistic regression model, learning
rate and batch size are set to 0.001 and 10,000, respectively. The
number of epochs is set to 50, as the linear model converges
much faster than the ANN model.

In training and evaluating both models, we randomly divide
our trip order datasets into training, validation and test sets at a
ratio of 7 : 1.5 : 1.5. As we have 759,033 orders in our dataset,
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TABLE IV
THE CONFUSION MATRIX OF OUR ANN MODEL IN MULTI-CLASS TRIP PURPOSE MINING

this means that the training, validation and test sets have 531,323,
113,855, and 113,855 data samples.

B. Multi-Class Trip Purpose Mining

To inspect model performance for each candidate trip pur-
poses, Table IV presents the confusion matrix of our ANN
model. In Table IV, we use the trip purpose # (shown in Table II)
to represent different trip purposes due to limited space. For
example, trip purpose #1 corresponds to “Recreation”. In this
confusion matrix, each row shows how trips of a particular trip
purpose in ground truths are identified, and each column shows
how trips of different trip purposes in ground truths are identified
as a particular trip purpose. Also, the number along the diagonal
(in bold) means the number of samples of a particular trip
purpose that are correctly identified. For example, the number
at the intersection of #1 row and #1 column shows that 1,777
trips with the purpose “Recreation” in ground truths are correctly
identified as “Recreation” trips; the number at the intersection of
#3 row and #7 column shows that there are 1,540 trips with the
purpose “Shopping” in ground truths are identified as “Homing”
trips. It could be seen from Table IV that the accuracy of the ANN
model is 67.15%.

Based on the confusion matrix, for each trip purpose, we also
calculate the precision and recall, by reducing the multi-class
problem to binary-class problems. For recall, the recall of a
particular trip purpose is the number at the intersection of the
diagonal and the corresponding row, divided by the sum of the
row. For precision, it could be calculated by substituting column
for row. For example, the recall of trip purpose #1 (“Recreation”)
is 1,777 divided by the sum of row #1, and the precision of
trip purpose #1 is 1,777 divided by the sum of column #1.
Furthermore, by taking averages among precisions (or recalls)
of all trip purposes, we obtain the macro average precision (or
macro average recall). The macro average precision and macro
average recall of the ANN model is 66.91% and 56.65%.

To show the effects of dynamic prices, i.e., the improvement of
model performance by considering dynamic prices, we exclude
all the features belonging to dynamic prices context as shown in
Table III and re-train the ANN model. Results show that, without

features from dynamic prices context, the model achieves an
accuracy of 57.34%.

We have the following observations based on the above re-
sults:
� Our model achieves a satisfactory accuracy compared

with state-of-the-art. [49] studies trip purpose inference
under similar settings – i.e., based on large-scale datasets
without individual preference information, as is discussed
in Sections I and II – and it adopts a dual-attention graph
embedding network without dynamic prices. The accuracy
of [49] is 64.57%, and it is thus clear that our model
has an accuracy slightly higher than the state-of-the-art.
The consideration of dynamic prices in our study is more
effective than using a more complex model.

� Our model in multi-class trip purpose mining is accurate
enough for a privacy attacker. The ANN model achieves
an accuracy of 67.15% in a 9-class classification problem.
This accuracy means that our model is generally applicable
in real-life scenarios. We offer a more detailed discussion
on model accuracy in Section V-D.

� Our model has high precisions for almost all trip purposes.
We value precision more than recall, as a higher precision
means that “if the model identifies a trip order to be of
a particular trip purpose, the probability of being correct
is high” – i.e., the attacker is more confident about the
inferred trip purpose. The precisions range from 58.64%
to 76.19%, with a macro average of 66.91%. In other words,
the attacker could be, on average, 66.91% sure about the
inferred trip purpose.

� Features from dynamic prices indeed help an attacker to
find out trip purpose. Compared to the case without using
dynamic prices features, using such features increases the
model accuracy by 17.1%.

� The ANN model is trained for all 9 candidate trip purposes,
and there are large performance gaps between some trip
purposes. One possible reason is the class imbalance. For
example, the numbers of trips with purpose #6 (“Trans-
portation”) and #7 (“Homing”) are overwhelmingly high,
and the model may thus tend to identify trips with other
purposes to have a trip purpose #6 or #7, resulting in high
recalls for these two trip purposes. This also motivates
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TABLE V
THE OVERALL RESULTS FOR BINARY-CLASS TRIP PURPOSE MINING

us to perform binary-class trip purpose mining to lower
the impacts of class imbalance. Another possible reason is
different mining difficulties, i.e., the difficulty of mining a
trip purpose varies across different trip purposes.

C. Binary-Class Trip Purpose Mining

We train logistic regression models to solve the binary-class
trip purpose mining problem, created by reducing the multi-class
trip purpose mining problem using the one-vs.-all paradigm. As
mentioned previously, the goal is to find out and quantify the
different extents of privacy leakage of dynamic prices regarding
different trip purposes. Another goal comes from our obser-
vations in Section V-B: the model for multi-class trip purpose
mining has large performance gaps between trip purposes due
to class imbalance.

Due to limited space, in this section we show the results
of binary-class problems regarding some of the 9 candidate
trip purposes. We choose trip purpose #6 (“Transportation”),
#7 (“Homing”) and #9 (“Working”) in this section. These trip
purposes account for larger proportions among all trips, and
correspond to trips going to transportation service facilities such
as airport or train stations or commuting trips. We show the
overall results on these trip purposes in Table V, including AUC,
the classification threshold when we have the highest accuracy,
the corresponding accuracy and precision. The comparison be-
tween Tables V and IV confirms the effectiveness of the logistic
regression models with feature crossing:
� The logistic regression models in binary-class problems

achieve precisions close to the precisions with the ANN
model. The precisions of trip purpose #7 and #9 (i.e.,
62.41% and 60.29%) are close to that with ANN model
(i.e., 63.34% and 61.21%), and for trip purpose #6, the
precision with the logistic regression model is even slightly
higher (74.01% vs. 73.71%).

� The logistic regression models achieve much higher ac-
curacies, i.e., 79.78%, 78.75% and 90.21% for the three
chosen trip purposes. On one hand, it shows that the logistic
regression models are accurate enough and applicable in
practice. On the other hand, though this may be the result of
class imbalance, the precisions already show the models’
performance.

Besides having comparable performance with the ANN
model, the logistic regression model also helps us quantify
feature contributions. Knowledge of feature contribution could
be used to answer questions such as “what features are important
and by how much?”. In a linear model, we could intuitively
compare feature contributions by examining the corresponding
weight of each feature. We examine the absolute value of the

weight corresponding to each dimension of the input feature
vector, and find out the feature or the crossed feature, as well as
the context, it belongs to, and show them in Table VI. In Table VI,
we only show the top-15 dimensions (i.e., approximately top 1%
dimensions) for the three chosen trip purposes due to limited
space. In the “Feature” column, a “×” symbol is used when
the dimension in question belongs to a crossed feature; in the
“Context” column, “B”, “S”, “T”, or “D” represents “basic
trip information”, “spatial context”, “temporal context” and
“dynamic prices context”, respectively.

Regarding feature contribution for the three chosen trip pur-
poses, we have the following observations:
� Dynamic prices indeed lead to privacy leakage, but to

different extents across different trip purposes. Intuitively,
among the top-15 dimensions, the number of dimensions
that are related to dynamic prices context is 9 for “Trans-
portation”, 12 for “Homing” and only 1 for “Working”.
Besides, the weights of these features and dimensions fall
in a broad range.

� Feature crossing is indispensable in improving the per-
formance of linear models. The top-15 dimensions for all
the chosen trip purposes are mostly (35 out of 45) from
crossed features. Common crossings are between S and
T, forming spatio-temporal features, or S (or T) and D,
showing correlations between dynamic prices and spatial
or temporal features.

� The models achieve the biggest power only when informa-
tion from dynamic prices, spatial context, and temporal
context are all carefully extracted. A lack of any one of the
three information sources leads to performance degrada-
tion in trip purpose mining. This inspires us that designing
proper privacy-preserving mechanisms for any one of the
three sources could help to prevent privacy leakage from
other information. For example, even with dynamic prices
data, an attacker could not peek for accurate trip purposes
without a trip’s spatio-temporal information.

� Trip purpose “Working” is special, as temporal context
plays an overwhelming role. 14 out of the top-15 dimen-
sions are solely from temporal context, with the only other
one being a crossed feature from dynamic prices and spatial
context. Specifically, the day-of-week and timeslot of order
start time are so discriminative that it is already enough to
find out “Working” trips with them. In this case, the level
of privacy leakage from dynamic prices is low.

� For trip purpose “Transportation”, the influence from
temporal context features is reduced, but the timeslot
of order start time is still important as it appears in
8 out of 15 top dimensions, showing that “Transporta-
tion” trips happen during particular timeslots. Secondly,
travel time and distance are of high significance. This is
unique and agrees with our everyday experience. Lastly,
the level of privacy leakage from dynamic prices is much
higher.

� For trip purpose “Homing”, the level of privacy leakage
from dynamic prices may be the highest among the chosen
trip purposes. As we consider, “Homing” trips have distri-
butions of destination and order time that are more random,
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TABLE VI
THE TOP-15 FEATURES/DIMENSIONS RANKED BY WEIGHTS

and thus a closer coupling of features from dynamic prices
and spatio-temporal context is necessary.

D. Discussions

We provide further discussions on the effects of dynamic
prices, the performance of our models, data accessibility, the
overfitting issue with feature crossing, the consideration of
individual information, and the applicability of our study.

The effects of dynamic prices. Our evaluation results already
confirm the privacy leakage from dynamic prices, as an attacker
could use features from dynamic prices to improve the accuracy
of models in trip purpose mining. We give some explanations
on the effects of dynamic prices below.

As we have mentioned, the reason why dynamic prices help
to find out trip purpose is that, passengers going for trips with
a certain purpose always have a stable preference on dynamic
prices. For example, people going for work (“Working”) do
not care about dynamic prices that much because they are in
a hurry (this is also verified in [3]). By comparison, people
going back home (“Homing”) may accept a broader range of
dynamic prices, as their destinations or order start time differ
and they are probably not eager to go. In fact, this observation
also holds for other services involving dynamic prices – users
with a certain characteristic always have a stable preference
for dynamic prices. It is thus possible to identify, for example,
whether one is in a family trip or business trip based on the flight
ticket price s/he buys.

Another reason is that, dynamic prices are actually an im-
plicit description of trip semantics such as spatial or temporal
contexts. Without dynamic prices, it is common to extract a lot
of information from different sources to describe trip semantics
by, for example, defining static or dynamic POI features to com-
prehensively model POI information, relying on other datasets
such as check-in data from LBSN, trip surveys, household infor-
mation, personal questionnaire, and etc. For a privacy attacker,
all these information are hard to obtain, and even when they
are available, sometimes the correlation between them is not
accurate and realistic due to reasons such as time misalignment.

Dynamic prices, on the other hand, are an integrated representa-
tion. Service providers always claim that their dynamic pricing
algorithms are carefully designed to incorporate many factors
such as the supply and demand condition; and these factors are,
in turn, the result of the spatial and temporal contexts which
otherwise we need to go to great lengths to describe. Therefore,
if dynamic prices are determined in a reliable and sophisticated
way as claimed by service providers, they could save attacker’s
efforts in describing trip semantics. It is true that we don’t
know how dynamic prices are related to trip semantics because
pricing algorithms are mostly kept as secrets, but this could be
approached by further studying dynamic pricing mechanisms,
predicting dynamic prices based on various features, etc.

The performance of our models. Our ANN model in multi-
class trip purpose mining achieves an accuracy and macro aver-
age precision of 67.15% and 66.91%, respectively. The logistic
regression models used in binary-class trip purpose mining
have similar performance. We claim that the performance of
our models is enough for the problem, and we give a detailed
discussion from the following four perspectives.

Firstly, the accuracy itself is not the main goal of our study;
instead, the accuracy improvement brought by dynamic prices
is, as this is a clear signal of the existence of privacy leakage
from dynamic prices. The goal of our study is to confirm the
existence of privacy leakage from dynamic prices, i.e., dynamic
prices help to improve trip purpose mining results from the
attacker’s perspective. In other words, as long as the accuracy
of a model is high enough so that the results are convincing, we
value the improvement of accuracy with dynamic prices more
than the absolute value of accuracy. Evaluation results show
that, for the improvement of accuracy, the ANN model trained
with dynamic price features has an accuracy 17.1% higher than
the model without such features. Hence, the improvement of
accuracy brought by dynamic prices show the existence of
privacy leakage. For the absolute value of accuracy, we compare
our model accuracy with state-of-the-arts later.

Secondly, we explain the reason why it is difficult for our
work, as well as similar studies, to obtain a very high mining
accuracy. Unlike other trip information such as trip destination,
trip purpose is more implicit and harder to guess. As discussed
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in Section II, a large proportion of previous studies are based on
travel surveys or questionnaires that indicate the characteristics
of participants, and the number of participants is usually rela-
tively small. Therefore, it is easier to obtain a high accuracy in
these studies.

On the other hand, our work belongs to the category of
studies that are based on large-scale datasets without personal
preference information. Passengers and orders are spread across
the whole city, and the number of orders reach hundreds of
thousands during a whole month. The datasets used in our study
also do not contain any description of the characteristics of
particular passengers or group of passengers. As a result, it
is much harder to obtain a higher accuracy in our work. We
compare our results with that of [49], in which a dual attention
graph embedding network is adopted to predict trip purpose
based on large-scale datasets with an overall accuracy of 64.57%.
Note that [49] uses a more complex model but does not consider
the impacts of dynamic prices. The comparison shows that: (a)
the absolute value of accuracy of our model is comparative to
that of state-of-the-art; and (b) considering dynamic prices is
effective in trip purpose mining and may be more important
than adopting a more complex model.

Thirdly, the performance is enough for possible application
scenarios. For example, the attacker could be a third-party adver-
tiser, using trip purposes to place suitable advertisements; or the
attacker could be from a competing service provider, and wants
to understand the spatio-temporal distribution of trip purposes
so that s/he could take advantage of this and design optimal
competition policies. Exceptions are those application scenarios
in which the attacker needs to associate the trip purpose with one
or more particular passenger(s), but such scenarios require the
adoption of other techniques such as trajectory-user linking, and
are thus out of the scope of our paper. We leave this as a future
work.

Lastly, we also list some possible ways of performance im-
provement that could be considered in the future work:
� Using more datasets or more sophisticated algorithms: for

datasets, one could choose those datasets describing pas-
sengers’ trip patterns, demographic characteristics, order
histories, etc. For example, the check-in data from LBSN
services is able to describe trip pattern or POI popularity,
and is thus used in many human mobility studies or smart
urban services. But when choosing data, it is still necessary
to inspect the feasibility of obtaining such data from the
attacker’s perspective. For algorithms, possible choices in-
clude random forest model, deep neural network, attention
network, etc. Similarly, when choosing algorithms, one
need to carefully inspect whether a particular algorithm
helps to describe some features that are important to trip
purpose results.

� Using pruning: some trip orders may not be helpful or
necessary in model training. For example, some orders
have origins or destinations that have no POIs around –
i.e., they could be viewed as outliers; some orders have
average dynamic price multipliers that are always 1 in the
origin or destination cell – i.e., dynamic prices may have

no effects. These orders should be carefully pre-processed
before model training.

� Training different models for different spatio-temporal
combinations: for example, different ANN models could be
trained in central business district, around big residential
communities, during morning rush hours, etc. There are
many possible ways of dividing spatial regions, e.g., based
on city plan, dynamic prices, the number of orders, the
number of drivers passing by, statistics of similar services
such as taxi, etc. There are also many possible ways of
dividing temporal periods, e.g., using rush hours, using
weekdays and weekends, relying on timetables of trains or
buses nearby, etc.

Data accessibility. Our study uses four different datasets,
including trip order data, dynamic prices data, POI data and bus
& metro distribution data. The accessibility of these datasets is a
prerequisite of not only the feasibility of the trip purpose mining
attack, but also the applicability of our study, i.e., the possibil-
ity of applying our methodologies to other similar services or
problems. Among these datasets, the trip order data (excluding
the text description of destination), POI data, and bus & metro
distribution data are either open, public datasets, or crawled from
public services, and are thus easily accessible. In the following,
we concentrate on the accessibility of the dynamic prices data,
as well as the text description of destination.

Dynamic prices data. We clarify in Section III-B that we
are using the hourly average dynamic price multiplier at the
level of city cells, instead of the exact dynamic price multiplier
associated with each order. The two reasons include avoiding
outliers and making it easier for the attacker to obtain data.

There are indeed some possible ways to obtain the hourly
average dynamic price multiplier. Firstly, price multiplier is
not a privacy for drivers, so an attacker, or more generally, a
third-party, could design proper incentive mechanisms to en-
courage drivers to share dynamic price multipliers of the orders
they take, in a crowdsourcing fashion. Another feasible way is
to deploy multiple mobile phones across carefully calculated
and representative locations and register as drivers. The average
dynamic price multiplier is usually displayed on drivers’ mobile
app to help them make seeking decisions, and in this way the
attacker could collect average dynamic price multipliers across
the city. Similar procedures have been carried out in [2] to study
the distribution of dynamic price multipliers.

Text description of destination. It refers to the text input by
passengers on the mobile app when specifying origins or destina-
tions. In traditional taxi service, the origins and destinations are
recorded by on-car GPS devices and there are only longitude
and latitude records, with no semantic information. On the
contrary, thanks to the development of intelligent transportation,
nowadays there is a rapidly growing proportion of transportation
services – not only RoD service (e.g., taxis) – adopting mobile
apps for passengers. With mobile apps, semantic information
such as the text description of destination are now recorded by
service provider.

With such data already recorded, there are multiple possible
ways to obtain such data:
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� In some cases, the service provider may actively want to
publish the data or share with some parties. An example is
research collaboration.

� It is also possible for an attacker to obtain such data by, for
example, compromising the servers of the service provider.

� Another possible approach is crowdsourcing. For example,
one could design a mobile app and incentivize passengers
to upload their trip information (including, certainly, the
text description of destination). In this way, one may not
be able to obtain the text description of destination of all
orders, but could still obtain the data of a certain proportion
of orders, depending on the incentive mechanism design,
which is enough for model training.

Worries may still exist that none of the above ways work. In
fact, the text description of destination is used to generate the
trip purpose ground-truth (e.g., labelling the data), so if there
are other possible ways to generate the ground-truth, obtaining
the text description may not be a must. For example, there
are already a large number of studies on trip purpose mining,
imputation or inference (see Section II), and their algorithms and
results could be used as ground-truth and thus help an attacker
in model training. The fact that most previous studies are based
on surveys or questionnaires instead of large-scale datasets does
not render their results useless as ground-truth.

Another problem may arise that if an attacker could generate
the trip purpose ground-truth from the text description of desti-
nation, why it is necessary to design all the learning models for
trip purpose mining. We provide our thoughts from the following
two perspectives.

Firstly, the data an attacker could obtain may be incomplete.
Through the possible ways listed above, though it is possible
to obtain data and generate trip purpose ground-truth, it is
still somewhat difficult to collect a complete set of data. For
example, in research collaboration a service provider usually
publishes some selected data covering, say, a small part of the
city, a short period of time, etc; in a compromising attack, it is
even harder to get complete data; in crowdsourcing, it is also
infeasible to incentivize everyone to upload their information.
Therefore, the attacker could use the obtained incomplete data
to train models, and use the learned models to infer trip purpose
in a larger dataset, in which ground-truth is not available. To
achieve this, the representativeness of the incomplete data should
be guaranteed to some extent, so that the model learned on
incomplete data could be applied to other scenarios.

Secondly, there are other application scenarios that require
the generation of trip purposes and building a machine learning
model simultaneously. For example, as a future work, we plan to
study the privacy leakage problem across cities – if an attacker
could obtain all the required data of city A and train a model
for city A, is it possible that s/he transfers the model to city B
and mine trip purpose there? What are the impacts from dynamic
prices? A possible circumstance is that the attacker may not have
enough data of city B so that the ground-truth in city B is not
available.

The overfitting issue with feature crossing. It is a two-edged
weapon that feature crossing generates high-dimensional fea-
tures by multiplication. On one hand, it increases the non-
linearity expressiveness and thus improves model accuracy;

on the other hand, it may lead to overfitting due to the high-
dimension. Our practices to avoid overfitting include:
� We do not cross more than two features. As is stated

in Section IV-E-2, crossing more than two features not
only makes the resulting feature non-intuitive and hard to
interpret, but also dramatically increases the dimension of
the feature vector.

� In crossing two features, we do not set any specific rule
as to what features are to be crossed. Firstly, crossing all
pairs of two features makes the dimension of the resulting
feature vector to be 6,073, which is much smaller than the
number of training samples. Secondly, no manual feature
selection is done in advance, and we could then determine if
a particular crossed feature is non-trivial by inspecting the
corresponding weight. This may not be perfectly precise,
but still gives constructive insights.

� We adopt the L2-regularization to control overfitting:
weights of features are restricted to be small enough.

Besides these practices, there are also other possible tech-
niques if necessary. For example, other types of regularization –
such as L1-regularization, spatio-temporal regularization, etc., –
could be used. L1-regularization puts special attention on feature
selection; spatio-temporal regularization, also used in [23], cap-
tures the fact that the prediction target should not change much
from one occasion to another if these occasions are close enough
spatially or temporally. Another example is to perform feature
crossing in a hit-and-trial fashion: e.g., crossing features from
some particular contexts and then prograssive crossing more by
inspecting the intermediate results.

The consideration of individual information. It is true that
considering contextual or individual information would improve
the accuracy of trip purpose mining. The most direct way of
doing this is to extract as many contextual features from all kinds
of datasets as possible before model training. Another possible
way is to pre-train a model without contextual or individual in-
formation, and then use individual information of, say, different
groups of people, to fine-tune the pre-trained model. Either way
would possibly improve model accuracy and offer more in-depth
explanations of trip purposes, but meanwhile the collection
of more datasets is required – e.g., surveys, questionnaires,
household information, demographics data, etc.

But in our study, it is infeasible to consider much individual
information. As trip purpose mining is used as an example to
validate the privacy leakage from dynamic prices, it is studied
from an attacker’s perspective. We therefore choose to use
large-scale datasets without individual preference information.
For an attacker, it is difficult to obtain the above-mentioned
datasets describing contextual or individual information such
as characteristics, behaviors, and preferences; instead, we pay
special attention to the possibility to obtain datasets and provide
relevant discussions.

The applicability of our study. We provide discussions from
two sides: applying our methodologies to trip purpose mining
with similar datasets, and applying our idea to similar problems
or services.

Trip purpose mining with similar datasets. Our criteria of
choosing datasets (i.e., “ubiquitous”, “collective” and “easily
accessible”) make it possible to apply our methodologies to
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practice for an attacker. The above discussions about data ac-
cessibility explain the ways of collecting similar datasets: they
should be either public, or could be approximated. And once
datasets are ready, our methodologies could be applied.

Similar problems or services. The idea to study privacy leak-
age from dynamic prices is simple: if dynamic prices help to
find out a privacy-related target easier or with a higher accuracy,
then it is safe to claim the existence of privacy leakage. Such an
idea could be easily applied to similar problems or services as
long as there are relevant datasets to support the inference. For
example, in flight ticket service, the target may be chosen as the
type of tour, passenger’s marital status, passenger’s occupation,
etc.; in hotel booking service, the target could be also the type of
tour, or user’s membership status, user’s personal information
such as age or income, etc.

VI. CONCLUSION

We focus on the privacy leakage from dynamic prices, which
are used in various forms in different services or scenarios. Trip
purpose is chosen as a specific example of privacy, and we aim
to discover the existence of privacy leakage, and quantitatively
measure feature contributions – i.e., which feature helps an
attacker in trip purpose mining more and by how much. We
tackle the trip purpose mining problem as a multi-class problem
or multiple binary-class problems, based on the datasets that are
ubiquitous, collective and easily accessible.

Based on the datasets, we extract features that describe the
basic trip information, spatial, temporal and dynamic prices
context. In the multi-class problem, we train an artificial neural
network model, achieving an accuracy of 67.15% in trip purpose
mining. The goal is to prove the existence of privacy leakage
qualitatively. In the binary-class problems, we train logistic
regression models with feature crossing and achieve similar
classification performance. The goal is to quantitatively explain
feature contributions. Our results also confirm that considering
dynamic prices improve classification accuracy by 17.1%, and
that information from spatial, temporal and dynamic prices
context need to be carefully extracted and coupled together to
achieve the biggest classification power.

We also show that dynamic prices lead to different extents
of privacy leakage in identifying different trip purposes. Three
representative trip purposes are chosen, i.e., “Transportation”,
“Homing” and “Working”. For “Working” trips, the privacy
leakage from dynamic prices is minimal, and temporal features
such as day-of-week or order start time are the most important
in identifying such trips. For “Transportation” trips, dynamic
prices features show growing importance; travel time and dis-
tance become more significant, which is unique. For “Homing”
trips, the level of privacy leakage is the highest, as the number
of most influencing features that are relevant to dynamic prices
is the largest.
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