
36 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 43, NO. 1, JANUARY 2025

LEOEdge: A Satellite-Ground Cooperation Platform
for the AI Inference in Large LEO Constellation

Su Yao , Yiying Lin , Mu Wang , Ke Xu , Fellow, IEEE, Mingwei Xu , Senior Member, IEEE,
Changqiao Xu , Senior Member, IEEE, and Hongke Zhang , Fellow, IEEE

Abstract— With the rapid growth of low earth orbit (LEO)
satellites, enabling LEO AI inference becomes a fast-increasing
trend. However, due to resource heterogeneity, scheduling com-
plexity, and fast movement, how to decide the place of executing
each AI inference task is nontrivial in LEO systems. In this paper,
we propose LEOEdge, an edge-assisted AI inference system
for LEO satellites. We first introduce the adaptive modeling
technologies that automatically generate the model for each
satellite according to its computation resources. We then propose
a layered scheduling optimization scheme to schedule the AI
inference task in a distributed manner. LEOEdge also designs a
seamless data transmission scheme to avoid transmission failure
due to the LEO satellite movement. We conduct a series of
simulation tests to validate the performance of the proposed
LEOEdge, in terms of the neural network searching efficiency,
average time execution latency, and delivery latency.

Index Terms— Cloud-edge-device computing, task offloading,
multi-layer optimization, LEO satellite.

I. INTRODUCTION

THE recent rapid advances in low earth orbit (LEO)
satellite [1] technologies have shown great success

in launching Global Internet access services. For example,

Received 11 April 2024; revised 26 June 2024; accepted 5 August 2024.
Date of publication 26 September 2024; date of current version 18 December
2024. This work was supported in part by the National Key Research and
Development Program of China under Grant 2022YFB3102301; in part by
the Science Fund for Creative Research Groups of the National Natural
Science Foundation of China under Grant 62221003; in part by the National
Natural Science Foundation of China under Grant 62472240, Grant 62471066,
Grant 62394322, Grant 61932016, Grant 62132011, Grant 62132009, Grant
62101301, Grant 62394323, Grant 92167204, and Grant U22B2031; in
part by the National Science Foundation for Distinguished Young Scholars
of China under Grant 61825204; in part by Beijing Outstanding Young
Scientist Program under Grant BJJWZYJH01201910003011; in part by the
Ant Group through CCF-Ant Innovative Research Program under Grant
CCF-AFSGRF20210023; and in part by Beijing National Research Center
for Information Science and Technology under Grant BNR2023TD03006.
(Corresponding author: Mu Wang.)

Su Yao is with Beijing National Research Center for Information Sci-
ence and Technology (BNRist), Tsinghua University, Beijing 100190, China
(e-mail: yaosu@tsinghua.edu.cn).

Yiying Lin, Mu Wang, and Changqiao Xu are with the State Key Laboratory
of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China (e-mail: linyiying@bupt.edu.cn;
muwang@bupt.edu.cn; cqxu@bupt.edu.cn).

Ke Xu and Mingwei Xu are with the Department of Computer Sci-
ence and Technology, Tsinghua University, Beijing 100190, China, and
also with the Zhongguancun Laboratory, Beijing 100081, China (e-mail:
xuke@tsinghua.edu.cn; xumw@tsinghua.edu.cn).

Hongke Zhang is with the School of Electronic and Information
Engineering, Beijing Jiaotong University, Beijing 100044, China (e-mail:
hkzhang@bjtu.edu.cn).

Digital Object Identifier 10.1109/JSAC.2024.3460083

Fig. 1. LEOEdge operational architecture.

Starlink [2] with more than 4000 LEO satellites provides
Internet services to more than 2.3 million users within
the infrastructure-less area. The purpose of better support-
ing various Internet applications with artificial intelligence
(AI) use cases, computer vision (CV) [3], natural language
processing (NLP), and recommendations, raises a growing
demand trend on enabling computing on LEO platforms.
However, the onboard resources of LEO satellites can be
limited since most precious resources are consumed by data
forwarding and transmission. To overcome the resource short-
age in LEO constellations, a promising way is to build
a space-ground collaborative computation platform [4] that
allows the LEO satellites to offload parts of computa-
tion tasks to high-performance ground computation centers.
As shown in Fig. 1, LEO satellites collect the images and
text information, running the AI inference model during
periods of light workload. When in heavy workload, they
forward the data to the ground computing servers. The
servers run the AI model and output the inference results.
The results are then delivered to the end users via LEO
constellations.

Efforts have been made to enable highly efficient task
offloading within the space-ground collaboration paradigm.
Several studies [5], [6] attempt to apply machine learning
technologies such as deep Q-learning and Actor-critic rein-
forcement learning to solve the complex offloading problem
when LEO satellites are involved. Studies such as [7], [8]
and [9] leverage the edge/cloud resource to boost satellite
computing by formulating the problem as an optimization
problem such as game theory. These studies aim to solve the

1558-0008 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:10:12 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5165-2787
https://orcid.org/0009-0008-9389-044X
https://orcid.org/0009-0000-3751-5495
https://orcid.org/0000-0003-2587-8517
https://orcid.org/0000-0002-4847-4585
https://orcid.org/0000-0003-1467-1086
https://orcid.org/0000-0001-8906-813X

YAO et al.: LEOEdge: A SATELLITE-GROUND COOPERATION PLATFORM FOR THE AI INFERENCE 37

problem of providing efficient computation resource sharing
and task scheduling among satellites and ground computing
centers, issues coming from coordination among huge-scale
constellations, seamless data transmission between space-
ground, and heterogeneous computation capabilities [10] are
yet to be solved. There are three main challenges to providing
highly efficient computation offloading to large-scale LEO
constellations:

1) Increasing constellation scales. The scale of LEO con-
stellations has been continuously expanding, and relying
solely on a centralized control for task scheduling will
encounter issues related to complexity and scalability in
the future. On the other hand, a fully distributed system
also poses significant challenges for LEO constellations.
The instability of inter-satellite and satellite-to-ground
links, along with limited bandwidth, makes it difficult
for different satellites and between satellites and ground
stations to frequently interact to determine the global
optimum. This limitation restricts the performance of
fully distributed decision-making.

2) Unstable ground-space links. LEO satellites move very
fast to maintain their orbit, and namely link session
between the satellite and the ground center can be
very short. For example, a 400km height LEO satel-
lite visibility time with a single ground station (GS)
could range from a few minutes to several minutes.
Maintaining dedicated links in such an environment
for information exchange that is required by online
offloading decision-making is economically impractical.
Besides, directly delivering raw data for AI model
training/inference can be also costly.

3) Computation capability differences among LEO satel-
lites. Satellites are highly diverse in computation
capability, i.e., early LEO satellites can only support
simple computation tasks based on CPU, and recently
launched satellites can support machine learning by
including GPU/NPU units [11]. The computational over-
head and inference performance of the same model
can vary significantly across different satellite platforms.
Therefore, it is necessary to configure model parameters
and network structures according to different satellite
platforms, which is yet to be considered in current
studies.

We solve the above challenges by proposing LEOEdge,
a decentralized computation offloading scheme for supporting
AI applications over large LEO constellations with satellite-
ground collaboration. For the first challenge, LEOEdge
provides a decentralized task offloading strategy that enables
each satellite to decide the place to execute the AI model
individually. For the second challenge, LEOEdge estimates
the workloads based on historical information without requir-
ing frequent data exchange between satellite and ground.
Besides, LEOEdge also applies a seamless data transmission
scheme to dynamically select the relay to forward data when
satellites moves out the communication range of the GS.
For the third challenge, we include a neural architecture
searching (NAS) algorithm to maximize resource utilization
by generating a personalized AI model for each satellite

based on its computation capability. Our contributions are as
follows:

1) We design a decentralized task offloading framework
based on stochastic optimization for LEO constellations,
which decides the best place in terms of the accuracy
and delay to perform the AI inference.

2) We apply NAS and seamless data transmission to
enable improving the computation utilization within the
satellite-ground computing collaboration. The approach
also aims to minimize the interference in data transmis-
sion between space and ground, which caused by the
high-speed movement of LEO satellites.

3) We conduct a series of evaluations based the real-world
traces to show how the proposed LEOEdge provides
an efficient AI inference for the LEO constellations
environment.

The rest of the paper is organized as follows: Sec. II briefly
introduces the background and related work; Sec. III presents
the system overview; Sec. IV describes the model components
of the system; Sec. V presents the three-layer decomposition
problem in LEO satellites; Sec. VI illustrates the layer opti-
mization of task scheduling in LEOEdge; Sec. VII gives the
seamless data transmission over the LEOEdge; Sec. VIII gives
the detailed design of adaptive modeling in LEOEdge; Sec. IX
provides the evaluation results and Sec. X concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Background of Edge Assisted LEO Systems

As the tasks in space become increasingly complex and the
demand for intelligence grows, LEO satellites are now capable
of supporting a multitude of complex AI tasks. These tasks
range from identifying targets in remote sensing images, image
segmentation, cooperative monitoring, and perception, etc.

A typical use case is Earth observation missions [12]. These
missions involve a large number of sensors on satellites to
capture Earth images and process them through nodes on
the satellite. Because directly transmitting raw data would
consume a substantial amount of bandwidth, the limited and
sometimes unstable link between the satellite and Earth makes
it difficult to ensure that these image data can be timely
transmitted to the ground for processing. At this point, the
processing units on the satellite, such as CPUs, GPUs, etc.,
can be utilized to process the data, and the processed data
or results can be directly transmitted to the ground, thereby
effectively reducing the processing latency of AI tasks.

Performing AI tasks on satellites holds potential. Nonethe-
less, this approach encounters challenges due to the hetero-
geneous computational capacities of satellites. This variance
is due to differences in satellites’ functions, production times,
and payloads, causing some to struggle with complex tasks.
Rapid updates in AI and limited computing power on satellites
also pose problems, limiting the size of deployable models and
their accuracy.

To effectively accommodate a wide range of AI appli-
cations within LEO satellite constellations, integrating edge
computing becomes imperative. This approach involves the

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:10:12 UTC from IEEE Xplore. Restrictions apply.

38 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 43, NO. 1, JANUARY 2025

strategic deployment of computational servers at ground sta-
tions, specifically designated to handle tasks relayed from
satellites. Within such an edge-enhanced LEO ecosystem,
it is the prerogative of the LEO satellite to ascertain whether
specific tasks should be offloaded to these GS servers. Upon
completion of these tasks, the outcomes are promptly relayed
back either directly to the satellite or to the end-users on the
ground, ensuring a seamless flow of information and optimized
task execution. In the following sections, we will introduce
related work addressing these challenges.

B. Related Work

Enabling AI inference on satellite platforms has become
increasingly attractive recently. AsyncFLEO [13] introduces
an innovative asynchronous FL framework that strategically
leverages the accessibility of satellite local models oppor-
tunistically, eliminating the need to wait for the complete
availability of all models. In [14], the challenge of deploying
AI applications is conceptualized as a dual problem involving
both model propagation and sink satellite scheduling. The
former extends the traditional FL star topology by intro-
ducing horizontal intra-plane communication pathways. The
latter leverages the predictability inherent in satellite orbiting
patterns. Giuffrida et al. [15] propose a tailored convolutional
neural network (CNN) implemented on a satellite platform to
enhance the capabilities of remote sensing for AI applications.
Razmi et al. [16] implement on-board FL orchestrated by
an out-of-constellation parameter server (PS). Considering
orbital movements, a communication scheme is proposed by
specifically tailoring to running a synchronous FL procedure
within a satellite mega-constellation orchestrated by an out-
of-constellation PS.

Executing the AI inference over the can be difficult due
to the resource limitation on satellite, and recent advanced
attempts to offload satellite inference tasks to the edge com-
puting on the ground.

Studies apply the ML-based offloading methods to satellites.
In [17], a three-tier computation offloading architecture based
on multi-agent deep reinforcement learning is given, which
mainly considers offloading location selection and transmis-
sion energy allocation issues. In [5], Qiu et al. formulate
the resource allocation problem as a joint optimization prob-
lem and use a novel deep Q-learning approach to learn the
optimal resource allocation strategies. In [6], a state-action-
reward-state-action based actor-critic reinforcement learning
resource allocation strategy is proposed. This approach facili-
tates optimal resource allocation and IoRT data scheduling by
leveraging causal information within LEO satellites. However,
ML-based methods require feeding the model with a large
volume of operation information and sufficient parameters to
ensure the offloading performance, which is at the cost of
extra computation resources. Specifically, the scheduling in
these methods requires additional CPU and storage resources
to maintain the ML model for continuously calculating the
place to offload tasks, making deploying the scheduling on
resource-limited satellites infeasible. If we deploy this model
on the ground, frequent data exchange between the satellite

and the ground is required to ensure the model’s accuracy,
which consumes precious communication resources.

Several studies attempt to facilitate computing resource
allocation by the optimization methods. To ensure the com-
puting offloading time of LEO satellites, the study in [18]
introduces the dynamic offloading strategy that minimizes
the overall delay of tasks from terrestrial users in satellite
edge computing network with the energy and computing
capacity constraints of the LEO satellite. In [19], a multi-
layer multi-access edge computing system is given out for
LEO satellites edge-assisted, This system addresses a joint
optimization problem involving the allocation of communica-
tion and computing resources, ensuring satisfaction of users’
computing latency requirements. In [20], Xie et al. consider
the problem of multi-layer edge computing architecture design
and heterogeneous edge computing resource co-scheduling
and propose a satellite–ground edge computing framework that
enables users to obtain computing services anywhere in the
world and reduce redundant network traffic. In [21], a novel
orbital edge computation task allocation algorithm grounded
in a greedy strategy is introduced for LEO satellite networks.
This algorithm extends the computational capabilities to the
satellite network, thereby furnishing users with diverse and
multi-tiered computing resources. Considering the large scale
of the LEO constellation and the fact that most nodes may not
be able to receive control commands from the ground in real-
time, a decentralized lightweight offloading scheme is required
to allow each satellite to decide where to execute the model.

Similar to our work, studies [22] and [23] design decen-
tralized computation offloading schemes in LEO satellites.
In [22], Vasisht et al. propose a low latency distributed
downlink. In [23], StarFront introduces a content distribution
framework that collaboratively exploits cache nodes within
both LEO satellites and terrestrial clouds, aiming to effi-
ciently optimize content access latency at a cost-effective level.
Although these studies also focus on distributed computing
offloading, our work is different in the following perspec-
tives: (1) Different from these studies that use distribution
architecture to minimize latency, LEOEdge also introduces a
layered optimization for better scheduling of different com-
pute resources; (2) We employ seamless data transmission
techniques and NAS to enhance communication efficiency
and optimize computational utilization in the collaborative
computing framework between satellites and ground stations;
(3) To accommodate the dynamic and complex environment
in space, each LEO satellite applied the DL-based method to
address the issue rather than using conventional optimization
approaches.

III. SYSTEM OVERVIEW

We build LEOEdge, a satellite-ground cooperation platform
designed to augment AI applications operating over LEO
satellites. Fig. 2 shows the structure of the proposed LEOEdge,
which mainly includes several modules deployed over edge
computing and satellites. Both the satellite and ground side
deploy the computing container to execute the AI inference
model. On the satellite side, LEOEdge deploys a seamless data
transmission module that prevents communication breakdowns

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:10:12 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: LEOEdge: A SATELLITE-GROUND COOPERATION PLATFORM FOR THE AI INFERENCE 39

TABLE I
COMPARISON OF RELATED STUDIES

Fig. 2. System overview of LEOEdge.

in model inference, which improves efficient data transmis-
sion. Task offloading module to orchestrate the distribution
of computation tasks across available units. It dynamically
schedules computation tasks, taking into consideration the
real-time status of the network and the computational demands
of the model. On the ground side, the edge computing server
applies the adaptive modeling scheme to select the models
for the computation units including edge servers and satel-
lites according to their computation capabilities. Based on
the On-satellite and On-ground design, LEOEdge provides
a high-performance model inference capability, specifically
tailored to the unique demands of AI applications in LEO
satellites.

A. Task Offloading

LEOEdge introduces layered optimization and decentralized
scheduling that realizes the offloading of computation tasks
on a case-by-case basis. When the framework implements
optimization among different layers, the policy decisions of the
upper layers need to take into account the resource status and

arithmetic constraints of the lower layers, and the scheduling
decisions of the lower layers need to be fed back to the upper
layers to guide future policy adjustments. Complementary to
layered optimization is the distributed scheduling mechanism.
Distributed scheduling refers to the process of allocating and
scheduling computational tasks among multiple computing
nodes. This scheduling mechanism allows individual nodes
to dynamically adjust task offloading decisions based on
real-time network conditions, resource availability, and task
priorities and requirements.

B. Seamless Data Transmission

The line-of-sight contact time between a particular LEO
satellite and a ground base station may relatively short.
A single transit of a satellite may last from 7 to 30 minutes
[24]. During this limited communication time, individual LEO
satellites are often unable to fully take on the reasoning of
large AI tasks due to their own workload and limited compu-
tational resources. LEOEdge introduces to avoid the failure of
inference results return to the satellite due to the satellite out of
the communication range of GS. By leveraging the predicted
arrival time of the satellite and incorporating relay point
forwarding mechanisms, LEOEdge enhances the continuity of
data exchange. This approach significantly bolsters the reli-
ability and efficiency of satellite-borne AI services, ensuring
more robust and continuous AI data processing capabilities in
space-based operations.

C. Adaptive Modeling

To minimize the impact of heterogeneous computing in
LEO satellites, it is very crucial to choose the appropriate
neural network for different computing units such as CPU,
GPU, and NPU. Thus, the adaptive modeling technology is
proposed on computation knowledge base. When the LEO
satellite is prepared to run the related AI application, the
ground will use the NAS to select the best-adapted model
based on the satellite’s device information to fully utilize the
satellite’s computing.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:10:12 UTC from IEEE Xplore. Restrictions apply.

40 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 43, NO. 1, JANUARY 2025

Fig. 3. Network model of satellite constellation.

Based on the above modules, the process of AI inference
over the LEOEdge can be described as follows: The AI
inference task subscriber submits the ML scripts containing
the AI model information to the edge computing server on the
ground. The adaptive modeling module parses the AI model
information and generates the models for each computation
unit based on their computation compatibility, i.e., model
execution time. The AI inference models are distributed and
deployed on both the ground edge servers and the satellites.
Once the satellite generates inference tasks, it will assist in
the offloading of computational tasks through seamless data
transmission. These data first go to the task scheduler to
determine whether it can be processed on local or on remote
ground edge servers. If the scheduler decides to process the
inference model on locally, the features are forwarded to
the local model to output the inference results. Otherwise,
the features are forwarded to the models on the ground edge
server, and the edge server returns the inference results to
the satellite. In the next three sections, we will describe the
designate of the main component task scheduler, seamless data
transmission and adaptive modeling.

IV. SYSTEM MODELING

A. Network Model

As illustrated in Fig. 3, suppose there are N satellites in
the satellite constellation, each orbiting the Earth along a fixed
trajectory. Assume that the constellation comprises M orbits,
with Nm satellites in each orbit, where m = 1, 2, . . . ,M .
Each satellite in an orbit maintains a link with its adjacent
satellites in the same orbit. Considering that satellites in
different orbits have varying speeds, stable links cannot be
maintained between satellites on different orbits. Instead, data
exchange is facilitated through opportunistic communication.
Suppose there is a GS S connected to a server cluster with
J servers, capable of providing computational support for
tasks on the satellite. Due to the limited communication range
of the GS, satellites can offload inference tasks only when they
pass within the range of the GS. Since the speed and orbit
of the satellites are fixed, based on the current position and
orbital parameters of each satellite, it is possible to calculate
the link time between satellites in adjacent orbits, as well as the
communication time between the satellite and the GS. Assume
the data rate between ni and S is l(ni, S). Considering

the extreme communication environment between the satellite
and the ground link, due to the underlying communication
errors and packet loss caused by long-distance transmission,
it is inevitable. Assuming the packet loss rate is p. For ni,
we let tni

denote raw data and result need to be exchanged
between ni and S, the minimum data transmission delay can
be estimated by

dni =
tni

p

l(ni, S)
(1)

For the case of executing the AI inference model locally,
the transmission delay can be omitted and is equal to zero.

B. Computation Model

In LEOEdge, LEO satellites are equipped with computation
modules to support various on-board AI inference tasks, such
as CV for remote sensing. Also, when the satellite enters
the communication range of the GS, some of the complex
computational tasks on the satellite can be offloaded to the GS.
However, due to the limited processing capacity of the GS
servers, deciding which tasks to offload from the satellite to
the GS is crucial for overall execution efficiency. For each ni,
the deployed AI model is mi with inference accuracy ai.
We denote the execution time of mi on ni as c(mi). The
server clusters S within the GS consists of the J servers, and
a load balance scheduler (LBS) allocates the arrival inference
tasks to each server according to server’s instant workload.
The workload of each server is measured by the number
of tasks allocated, i.e., the CPU occupancy. For simplicity,
we assume that all servers deploy the inference model with
the same architecture and AI inference tasks offloaded to
the server utilize the same model. Therefore, the server’s
workload can be measured by the number of arriving tasks.
Let the Lj(Q) denote the workload of j when the number of
allocated tasks is Q. Besides, since the server side is more
powerful in computation and a larger model can be deployed,
offloading the AI inference tasks can achieve better accuracy,
i.e., as ≤ ai. Furthermore, considering the virtualization
technologies are widely used in current edge computing, each
server runs multiple computing containers and each container
can individually execute AI inference. Assume there are O
containers for S and Oj is set of containers over the sever j,
the workload of each container can be given by Lo(Q), o ∈ O.

V. TASK OFFLOADING PROBLEM

The main objective of the task offloading in LEO satellites
is the improve the overall AI inference performance in terms
of the inference accuracy and execution time, and to ensure
the overall servers are within a reasonable workload. For the
first objective, we introduce an offloading advantage operator
in the form of

F (α∆c(i) + (1− α)∆a(i)) (2)

where

∆c(i) = c(mi)− c(me)− dni
(3)

∆a(i) = as − ai (4)
α ∈ [0, 1] (5)

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:10:12 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: LEOEdge: A SATELLITE-GROUND COOPERATION PLATFORM FOR THE AI INFERENCE 41

Without loss of the generality, F (.) is concave and equals to
zero when α∆c(i)+(1−α)∆a(i) < 0. This function measures
the benefit of offloading tasks to the edge server. The greater
the difference in time between executing the task at the edge
(including the time for data interaction and the execution time
on the edge server) and executing it locally, and the higher
the accuracy of the edge model compared to the local model,
the greater the value of this function. This indicates that the
benefit of offloading to the edge computing server at the GS is
higher. To constrain the workload, we introduce the following
constraints:

Lo(Qo) < P, ∀o ∈ O (6)

where Qo denotes the current number of tasks running on the
container o. Let xi,m denote the decision policy for ni, where
xi,m = 1 indicates the ni offloading its m-th tasks to the edge
server and o otherwise. Based on the above analysis, we can
formulate the task offloading optimization problem as follows:

max
∑
i∈N

M∑
m=1

F (α∆c(i) + (1− α)∆a(i))xi,m

s.t Lo(Qo) < P, ∀o ∈ O (7)

In the aforementioned problem, there is only one decision
variable xi,m, which is the decision made by the satellite on
whether to offload the task to the edge server. In fact, to meet
the strict constraints, task offloading is a multi-level decision-
making process. Firstly, each satellite decides whether to
offload each task onboard to the edge. When the raw data
of the computational task is transmitted to the GS, the LBS of
S decides to which server the task should be scheduled. Once
the raw data arrives at this server s, the server then decides on
which container to run the task. Thus, we further decompose
the optimization problem into a three-layer decomposition
problem as follows:

max
∑
i∈N

M∑
m=1

∑
o∈O

F ((α∆c(i) + (1− α)∆a(i))y3
i,m,o)

s.t LS(QS +
∑
i∈N

M∑
m=1

y1
i,m) < p

1
S

∑
s∈S

Ls(Qs +
∑

i,m∈N,M

y2
i,m,s)

≤ LS(QS +
∑
i∈N

M∑
m=1

y1
i,m)

1
s

∑
o∈s

Lo(Qo +
∑

i,m∈N,M

y3
i,m,o)

< Ls(Qs +
∑

i,m∈N,M

y2
i,m,s),

s ∈ S (8)

where y1
i,m is the first layer variable equals to xi,m. y2

i,m,s

is the second layer variable that 1 indicates the m-th task of
ni is offloaded to the s. y3

i,m,o is the third layer variable that
1 indicates the m-th task of ni is offloaded to the o of s. QS ,
Qs and Qo denote the current number of tasks processed by

Fig. 4. Layered problem decomposition.

the server clusters S, server s and container o, respectively.
As shown in Fig. 4, the task scheduler of the satellite is on
the highest layer, the LBS of the S is on the second, and the
s is the bottom layer. A given node in the higher layer can be
treated as an allocator to the nodes within the corresponding
cluster of the lower layer.

In the distributed solutions, each layer independently han-
dles its local computations. Coordination among these layers
is achieved by the exchange of parameters between layers.
Typically, these computations are iterative. In each iteration,
the upper-layer elements depend on the outcomes of multiple
iterations from the lower layer, a reflection of the solution
procedure’s inherent nature. Consequently, the upper layers
operate on slower time-scales, as they must await the results of
the lower layer’s iterations. In the classic setup of (1), the main
controller/distributor waits for parameter transmissions from
the end-users. However, with multi-layer decomposition, the
main controller’s communication is limited to sub-controllers
(intermediate layer entities) rather than all users. Assum-
ing that link latency is proportional to the distance and
the number of concurrently communicating nodes, shifting
computational and communicative loads to sub-entities via
multi-layer decomposition can decrease latency. This results
in accelerated iterations at the top layer.

VI. LEOEDGE TASK SCHEDULING

To solve the three-layer decomposition problem, we first
consider its Lagrangian:

L(y, λ, µ, η)

=
∑
i∈N

M∑
m=1

∑
o∈O

Fi(y3
i,m,o)− λ(gS(Qs, y

1)− p)

− µ(
∑
s∈S

gs(Qs, y
2
s)− gS(Qs, y

1))

−
∑
s∈S

ηs(
∑
o∈s

go(Qo, y
3

o)− gs(Qs, y
2

s)) (9)

where the

Fi(y3
i,m,o) ≜ F ((α∆c(i) + (1− α)∆a(i))y3

i,m,o) (10)

gS(Qs, y
1) ≜ LS(QS +

∑
i∈N

M∑
m=1

y1
i,m) (11)

gs(Qs, y
2
s) ≜

1
S

Ls(Qs +
∑

i,m∈N,M

y2
i,m,s) (12)

go(Qo, y
3

o) ≜
1
s
Lo(Qo +

∑
i,m∈N,M

y3
i,m,o) (13)

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:10:12 UTC from IEEE Xplore. Restrictions apply.

42 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 43, NO. 1, JANUARY 2025

y1, y2
s, y3

o are the column vectors with entries y1
i,m, y2

i,m,s,
y3

i,m,o, i ∈ N, m = 1, . . . ,M , respectively. η is the column
vector with the entries ηs, s ∈ S. Considering the ηo is
the Lagrange multiplier corresponding to the (

∑
o∈s Lo(Qo +∑

i,m∈N,M y3
i,m,o)−Ls(Qs+

∑
i,m∈N,M y2

i,m,s), ηo decouples
the layer 2 and 3 decisions. Similarly, the µ correspond-
ing to the

∑
s∈S Ls(Qs +

∑
i,m∈N,M y2

i,m,s) ≤ LS(QS +∑
i∈N

∑M
m=1 y1

i,m) decouples the layer 1 and 2 decision.
For (7), its dual problem objective can be written as:

G(λ, µ,η) = maxyL(y, λ, µ, η) (14)

and the dual problem is

min
λ≥0,µ≥0,η≥0

G(λ, µ,η) (15)

Given the objective of (7) is concave and the constraints
are linear, we have

min
λ≥0,µ≥0,η≥0

G(λ, µ,η)

=
∑
i∈N

M∑
m=1

∑
o∈O

F ((α∆c(i) + (1− α)∆a(i))(y3
i,m,o))

∗ (16)

where (y3
i,m,o))

∗ is the optimizer of the (7). By observing
the dual forms, we can find that the dual optimization leads
to the local task scheduling sub-problems for the Lagrangian
operator that can be solved in a distributed manner.

A. Distributed Algorithm

In practice, the offloading algorithm updates in iterations
that solve the dual variables of the optimum AI inference task
offloading. Let the states of the optimization on iteration θ(k)
as follows:

a(k) = (y(k), λ(k), µ(k), η(k)) (17)

We can write the update rules, for every k, the third layer
iterative as follows:

y3
i,m,o(k + 1) = y3

i,m,o(k) + γ
∂L(a(k)

∂y3
i,m,o(k)

= y3
i,m,o(k) + γ

∂Fi(y3
i,m,o(k))

∂y3
i,m,o(k)

− γ
∂Lo(Qo +

∑
i,m∈N,M y3

i,m,o(k))
s∂y3

i,m,o(k)
(18)

ηs(k + 1) = ηs(k)− γ
∂L(a(k)

∂ηs

= ηs(k)− γ′(
∑
o∈s

go(Qo, y
3

o(k))

− gs(Qs, y
2

s(k))) (19)

For the second layer iteration:

y2
i,m,s(k + 1)

= y2
i,m,s(k) + γ′

∂L(a(k))
∂y2

i,m,s(k)

= y2
i,m,s(k) + (ηs(k)

− µ(k)
S

)
∂Ls(Qs +

∑
i,m∈N,M y2

i,m,s(k))
∂y2

i,m,s(k)
(20)

µ(k + 1) = µ(k)− γ′
∂L(a(k)
∂µ(k)

= µ(k)− γ′(
∑
s∈S

gs(Qs, y
2
s)− gS(QS , y1)) (21)

For the top layer iteration:

y1
i,m(k + 1)

= y1
i,m(k) + γ′′

∂L(a(k))
∂y1

i,m(k)
(22)

= y1
i,m(k)−(λ(k) + µ(k))

∂LS(QS +
∑

i∈N

∑M
m=1 y1

i,m(k))
∂y1

i,m(k)

λ(k + 1)

= λ(k) + γ′′
∂L(a(k))

∂λ(k)
(23)

= λ(k) + γ′′(gS(Qs, y
1)− p)

Based on the above iterations, our task offloading algorithm
works as follows:

(1) In the third layer, each container finds the optimal deci-
sion on y3∗

i,m,o for the fixed local operator ηs of its deployed
server by using (18). The container updates the ηs according
to local optimizer y3∗

i,m,o and fixed upper layer optimizer y2∗
i,m,s

by using the (19). The pseudo-code of the detailed iterations
is given in Algorithm 1. The fourth line of the algorithm
represents a crucial step executed on the container, where each
container calculates the optimal task allocation strategy. The
nineteenth line is a key step on the server side, where the
server updates ηs based on the observed information.
The Algorithm 1 shows that the container decides on task
offloading by only communicating with the server.

(2) In the second layer, each server determines its optimal
total number of offloaded tasks by

∑
i,m∈N,M y2∗

i,m,s according
to the fixed operator µ from the LBS by using (20). The
LBS updates its operator µ by (21) with the fixed value of
y2∗

i,m,s and upper layer y1. The pseudo-code of the second
layer iteration is given in Algorithm 2. The third line in the
algorithm represents a crucial step executed on the server,
which involves computing the optimal strategy for allocating
tasks to different containers. The sixteenth line is a key step
on the LBS side, where µ is updated based on the observed
information. The Algorithm 1 shows that the server decides
on task offloading by only communicating with the LBS.

(3) In the top layer, each satellite ni its optimal task offload-
ing strategy y1∗

i,m for each generated task m by using (22),
according to the fixed value of λ and µ, the LBS updates the
λ according to (23) with the given y1. The pseudo code of the
top layer iteration is given in Algorithm 3. In the algorithm,
the fifth line represents a critical step executed on the satellite,
determining whether to offload tasks to edge servers. The
seventeenth line is a key step on the LBS side, updating λ
based on the received information.

Hence, according to the output and input in Algorithm 1, 2
and 3, the information exchange only occurs between the
neighboring layers. The algorithm executors of neighboring

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:10:12 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: LEOEdge: A SATELLITE-GROUND COOPERATION PLATFORM FOR THE AI INFERENCE 43

layers are directly linked and thus ensure communication
efficiency. Besides, each layer can individually iterate to the
optimum without synchronization between the layers.

Algorithm 1 Bottom Layer Task Scheduling //Run on
Container and Server
Input: model execution time {c(mi)}i∈N , c(me);

execution accuracy {ai}i∈N , as; transmission
latency {dni}i∈N ; Pending task queue
{{Qo}o∈s}s∈S(k), k = 1, . . .; ϵ;

Output: {y3∗
o }o∈s, Qo(k), {η∗s}o∈s;

1 while !k do
2 // Container o:
3 Observe the local Qo(k) and ηs(k + 1);
4 Calculate {y3∗

i,m,o}i∈N,m=1,...,M by (18);
5 Push {y3∗

i,m,o}i∈N,m=1,...,M , Qo(k) to server s;
6 //Server s:
7 for o ∈ S do
8 Observe Qo(k);
9 y3

o(k)← {y3∗
i,m,o}i∈N,m∈1,...,M ;

10 if y3
o(k)− y3

o(k − 1) < epsilon then
11 y3∗o ← y3

o(k);
12 end
13 go(Qo, y

3
0)← go(Qo(k), y3

o(k));
14 end
15 Observe Qs(k);
16 Observe {y2

i,m,s(k)}i∈N,m=1,...,M ;
17 y2

s(k)← {y2
i,m,s(k)}i∈N,m=1,...,M ;

18 gs(Qs, y
2
s)← gs(Qs(k), y2

s(k));
19 Use gs(Qs, y

2
s) and {go(Qo, y

3
0)}o∈s to update

ηs(k + 1) by (19);
20 Push ηs(k + 1) to o, o ∈ s and LBS;
21 if ηs(k + 1)− ηs(k) ≤ ϵ then
22 return {y3∗

o}o∈s, η∗s ← ηs(k + 1)
23 end
24 k++;
25 end

Remark 1: Our layered scheduling also applies to air seg-
ments, which we analyse here using UAVs. AI applications
in UAVs [25] include computer vision, auto-navigation, and
communications. However, UAVs typically lack the requisite
on-board processing capabilities [26], which means that exe-
cuting complex neural network models in UAVs doesn’t work.
Besides, UAVs contain various types of processors [27]. Our
approach is equally capable of addressing its heterogeneous
computing and improving higher inference accuracy and lower
latency when applied to UAVs. Compared to the applications
of LEO satellites in layered scheduling, UAVs are also posi-
tioned at the top layer of task scheduling, and we need to
consider only the delay calculation between the UAV and
GS. Firstly using a 3D coordinate system, we denote the
coordinates of the GS as w = {x, y, 0}. We assume that the
UAV is able to perform its mission properly at altitude H,
so the coordinates of the i-th UAV at time t is denoted as
Uni

(t) = {xt, yt, H}. Similar to [28], we express the channel

Algorithm 2 Second Layer Task Scheduling //Run on
Server and LBS
Input: ηs(k), k = 1, . . .; Pending task queue

{{Qo}o∈s}s∈S(k), k = 1, . . .;
{y1

i,m(k)}i∈N,m=1,...,M , k = 1, . . .;µ(0);
λ(k), k = 1, . . .;

Output: {y2∗
s }s∈S ,µ∗;

1 while !k do
2 //Server s:
3 Calculate the {y2∗

i,m,s(k)}i∈N,m=1,...,M by (20);
4 Push the {y2∗

i,m,s(k)}i∈N,m=1,...,M and Qs(k) to
LBS;

5 //LBS:
6 for s ∈ S do
7 Observe {y2∗

i,m,s}i∈N,m=1,...,M ;
8 y2

s(k)← {y2∗
i,m,s}i∈N,m=1,...,M ;

9 if y2
s(k)− y2

s(k − 1) < epsilon then
10 y2∗s ← y2

s(k);
11 end
12 gs(Qs, y

2
s)← gs(Qs(k), y2

s(k));
13 end
14 y1(k)← {y1

i,m(k)}i∈N,m=1,...,M ;
15 gS(QS , y1)← gS(QS(k), y1(k));
16 Use the {gs(Qs, y

2
s)}s∈S and gS(QS , y1) to update

the µ(k + 1);
17 Push the µ(k + 1) to LBS;
18 if µ(k + 1)− µ(k) ≤ ϵ then
19 return {y2∗s}s∈S , µ∗ ← µ(k + 1)
20 end
21 k++;
22 end

power between the UAV and the base station as:

Hni(t) =
β

||Uni
(t)− w||2

(24)

where β indicates the channel gain for a distance of 1m.
According to Shannon formula, the transmission rate between
UAV and GS is expressed as:

Rni
(t) = Bi log(Hni

(t)P/α + 1) (25)

where B denotes the bandwidth between the i-th UAV and GS.
P is transmit power. α is noise ratio. Thus, data transmission
delay can be presented by

dni
=

tni
p

Rni
(t)

(26)

VII. SEAMLESS DATA TRANSMISSION

During the offloading of computational tasks, due to the
rapid movement of LEO satellites and unstable communication
links, raw data cannot be transferred within the communication
window with the GS. Additionally, some inference tasks might
require the GS to feedback the computation results to the satel-
lite, which could also fail due to link failures or the satellite
leaving the communication range. Missing the communication

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:10:12 UTC from IEEE Xplore. Restrictions apply.

44 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 43, NO. 1, JANUARY 2025

Algorithm 3 Top Layer Task Scheduling //Run on
Satellite and LBS
Input: µ(k), k = 1, . . .; Pending task queue

{{Qo}o∈s}s∈S(k), k = 1, . . .;λ(0);
µ(k), k = 1, ldots;

Output: y1∗,λ∗;
1 while !k do
2 // Top layer scheduling
3 //Satellite i:
4 Receive µ(k) and λ(k);
5 Calculate the {y1∗

i,m(k)}m=1,...,M by (22);
6 Push the {y1∗

i,m(k)}m=1,...,M to LBS;
7 //LBS i:
8 Observe the QS(k);
9 for i ∈ N do

10 Observe the {y1∗
i,m}i∈N,m=1,...,M ;

11 {y1(k)}i ← {y1∗
i,m}i∈N,m=1,...,M ;

12 if {y1(k)}i − {y1(k − 1)}i then
13 {y1∗}i ← y1(k)}i};
14 end
15 end
16 gS(QS , y1)← gS(QS(k), y1(k));
17 Use the gS(QS , y1) to update the λ(k + 1) by (23);
18 if {λ(k + 1)}i − {λ(k + 1)(k)} ≤ ϵ then
19 return {y1∗}; λ∗ ← λ(k + 1);
20 end
21 end

window necessitates the satellite to reroute to the ground sta-
tion for transmission completion, leading to additional delays.
To address this issue, we propose a neighbor-assisted seamless
data transmission scheme to manage this challenge. Given
the uncertainty and diversity inherent in interstellar terrestrial
link channels [29], the influence exerted by channels across
various frequency bands varies significantly. Therefore, we do
not restrict our analysis to any specific channel conditions.
Instead, we operate under the assumption that both data rates
and link characteristics are stochastic in nature.

A. Raw Data Delivering

We first consider the case when delivering the raw data.
When ni determines to offload the inference task to the GS,
it first determines whether the transmission can be completed
within the communication time window. The communication
time T (oi, lG) between the satellite ni and the GS can be
calculated based on the satellite’s orbital altitude oi and the
coordinates of the GS, as referenced in [30]. Since the orbit of
the satellite is generally pre-given, this value can be directly
calculated and considered a constant. Let the current relative
time of entering the GS communication range be T0(i), the
available communication time Ta(i):

Ta(i) = T (oi, lG)− T0(i) (27)

If the raw data transmission time dni ≤ Ta(i), ni directly
sets the GS as the destination and begins to transfer the data.
Otherwise, if the raw data transmission time dni

≤ Ta(i), the

satellite selects the neighbor satellites as the relay to forward
the raw data to GS. ni first checks the neighbor satellite nj

within the same orbit is free to transfer the data. If the nj is
free, ni calculates the communication time between nj and ni.
Let the rtt denote the average round-trip-time between two
satellites, the instance capacity between two satellites is Cij ,
which can be estimated as in [31]. We have the instance data
rate kij = Gij/rtt. Thus, the estimated transmission time
using the nj as the relay can be given by:

dnij
=

tni
× (pij + p)

min{kij , l(ni, S)}
(28)

If the dnij
≤ Ta(i), ni forward the raw data to nj . If the

nj is busy (i.e., offloading task to GS) or dnij
≥ Ta(i),

then nj selects the satellite from other orbits as the relay
by the similar rule. For example, for each neighbor nj′ from
the other orbit, calculates the dnij′ by using (28), and select
nj∗ with maxNi

dnij′ and dnij′ ≤ Ta(i). Otherwise, if the
communication time of all neighbors is larger than the Ta(i),
ni executes the task locally.

It is worth mentioning that the reason we do not consider the
data transmission time with different cases in the offloading
optimization problem is that such calculation can be computa-
tionally intensive. Because each container requires calculating
and comparing the communication time of different cases.
Instead, let each satellite determine the way to deliver the data
is more efficient and practical.

B. Result Return

For inference tasks that require the computational results
to be sent back to the satellite, the GS will first evaluate
the communication windows of the nodes on the previously
established raw data transmission link. If the communication
window size is larger than what is required for the task return,
the inference results will be sent back through the previously
established link after the computation is completed. Otherwise,
the satellite will further consider a new link for data delivery.

Let the data size of the inference result denote as sni
,

for the case the ni directly forwards the raw data, the total
transmission time ni to GS can be given by:

d′ni
=

(tni + sni)p
l(ni, S)

+ c(me) (29)

The reason of adding c(me) in the above equation is that
when the ni is required to send back the computational results,
it is required to wait until the computation is completed at the
GS before the data can be transmitted back. In the case of
forwarding data with the assistance of relay nj , we have the
communication time:

d′nij
=

(tni
+ sni

)× (pij + p)
min{kij , l(ni, S)}

+ c(me) (30)

Similar to the previous scenario of transmitting only raw
data, we first determine to directly forward raw data to GS if
d′ni
≤ Ta(i). Otherwise, the ni will first select an idle neighbor

within the same orbit whose d′nij
≤ Ta(i) as the relay. The

above condition is not satisfied, a satellite with d′nij
≤ Ta(i)

in other orbits will be selected. If none of the above conditions

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:10:12 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: LEOEdge: A SATELLITE-GROUND COOPERATION PLATFORM FOR THE AI INFERENCE 45

are met, then the task is executed locally. The pseudo code of
the seamless data transmission is given in Algorithm 4.

Algorithm 4 Seamless Data Transmission //Run on
Satellite
Input: Ta(i); T0(i); neighbor data rate {kij}Ni and

packet loss rate {pij}Ni ; tni ; sni ; p; T (oi, lG) ;
1 //Calculate the communication time;
2 Case I: Inference results required to be returned ;
3 Case II: Inference results not to be returned;
4 Case I:d← (tni

+sni
)p

l(ni,S) + c(me);
5 Case II: d← dni ;
6 if d ≤ T (oi, lG)− T0(i) then
7 Deliver the raw data to GS;
8 end
9 else

10 Case I: d′ ← (tni
+sni

)×(pij+p)

min{kij ,l(ni,S)} + c(me);

11 Case II: d′ ← tni
×(pij+p)

min{kij ,l(ni,S)} ;
12 if d′ ≤ T (oi, lG)− T0(i) then
13 Deliver the raw data via j to GS;
14 end
15 else
16 for j ∈ Ni do
17 Case I: d′j ←

(tni
+sni

)×(pij+p)

min{kij ,l(ni,S)} + c(me);

18 Case II: d′j ←
tni
×(pij+p)

min{kij ,l(ni,S)} ;
19 if dj ≤ T (oi, lG)− T0(i) then
20 K.append(dj);
21 end
22 end
23 if K is not empty then
24 Deliver the raw data via j with minK dj ;
25 end
26 else
27 Execute the task locally;
28 end
29 end
30 end

VIII. ADAPTIVE MODELING

The main purpose of adaptive modeling is to adaptively
control the size and structure of the model based on the
computation capability. As shown in Fig. 5, our proposed
adaptive modeling allows developers to define the processing
delay interval and the structure size interval. It automatically
generate a network with the size that fits the device capability
and declared requirement. This design goal is achieved by the
combination of search space, search algorithm, and operator
knowledge base.

Search space refers to the set of all possible architec-
tures. For LEOEdge, search spaces should be able to cover
all hardware configurations within the device-edge scenarios,
decouple from the search algorithm, and be convenient for
code modifications. Based on PyGlove, we apply two functions
oneof and repeat. The function oneof defines the size of

Fig. 5. Illustration of adaptive modeling.

convolution block where ‘out_channels’ and ‘kernel_size’ can
be searched within the pre-defined space. oneof also supports
the search over different convolution modules. The function
repeat supports stacking the same network block multiple
times by defining the stack times interval.

A. Neural Searching Algorithm

The structure and size of models that perfectly fit the
device’s capabilities are selected from the defined search
space A via the search algorithm. LEOEdge supports per-
sonalized search algorithm deployment. Here, we use the
one-shot searching algorithm as an example to illustrate how
to generate the network for different computational platforms.
This algorithm mainly consists of three stages: First, supernet
weight optimization determines the weight of network WA
from A for ML models, by

WA = arg min
W
L(N (A, W)) (31)

where L is loss function of the model, N (A, W) denotes the
network in space A with the weight W . The second optimiza-
tion is to optimize the subnet structure by maximizing the
estimated accuracy within the given processing time constraint,

max Acc(N (a, WA(a)))
s.t Latpre(a) ≤ Latcons(D) (32)

where Acc(N (a, WA(a))) denotes the estimated accuracy for
the subnet N (a, WA(a)). Latpre(a, D) indicates the latency
of processing the structure a over device D. Latcons(D)
is the delay constraint over device D. Numerous methods
such as genetic algorithms solve the above problem. Besides,
generating subnet for different devices is easy under such an
optimization framework, by only manipulating the Latcons(D)
in the second problem.

The final optimization is using Nesterov’s AGD (NAG)
method to make the loss function converge faster. We will
define the tensor of the loss function as Γ(k). Also introduce
the auxiliary variable γ[k] and γ[0] = 1. For the k-th iteration:

Γ[k] = γ[k]− β ×∇L(γ[k]) (33)

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:10:12 UTC from IEEE Xplore. Restrictions apply.

46 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 43, NO. 1, JANUARY 2025

where β is set to 0.01 by repeated experiment. In contrast
to the traditional setting of the momentum coefficient as a
constant, our momentum coefficient is a function, which is
denoted as ∇L. Meanwhile, this method extends the heavy
ball approach by evaluating the gradient at an intermediate
point γ[k + 1] rather than Γ[k]. For the each of γ[k + 1], the
formula is as follow:

γ[k + 1] = Γ[k + 1]−Q[k](Γ[k]− Γ[k + 1])

Q[k] =
γ[k − 1]− γ2[k − 1]

γ2[k − 1] + γ[k]
(34)

The loss function measures the degree of inconsistency
between the model’s predicted and true values. When the value
of the loss function decreases rapidly, this indicates that the
model is able to adjust its parameters more quickly to more
accurately predict or fit the training data. For fast moving LEO
satellites, our search algorithm will be more advantageous.

The searching performance mainly relies on the estimation
accuracy of Latpre(a, D) of any device-subnet pairs, which is
non-trivial. This is because there are 300+ types of devices and
edge servers with different computation capabilities, memory
sizes, and various types of neural network operators. Testing
all possible subnet over each type of device is infeasible in
practice, given the millions of possibilities required to run.
To overcome this problem, we design a device knowledge base
for the estimation of processing delay.

B. Device Knowledge Base

To provide high accuracy and fast estimations on processing
time, we design a device knowledge base. The basic idea of the
device knowledge base is to store the operator-level processing
time for the devices and estimate the subnet processing delay
by accumulating the time of all operators in the subnet.
Specifically, the device knowledge base mainly includes four
attributes: compute engine, device spec, operator attributes,
and processing delay.

C. Compute Engine

The type of the compute engine, i.e., TFLite, PyTorch, and
their versions. Device spec: device type, e.g., iPhone 15 Pro,
hardware configurations, i.e., CPU, GPU, and mem-
ory configurations. Operator attributes: operator type
(e.g., binary operators, convolutional operators, transformer
operators), input data type (e.g., fp32/int32), operator-
related parameters (for the convolutional operator this
includes filter_h, filter_w, padding, stride_h,
stride_w, fused_activation_function). Process-
ing delay: operator-level processing delay on CPU and GPU.

To test operator delay, the single-operator model was exe-
cuted over the devices. We use the average running time
(by calculating the average single-round time when a running
model with 1s warm-up and 5s inference) to imply the operator
delay.

Based on the above knowledge base, the running time of
the model over CPU can be calculated as follows: Initially,
the delay in transferring the model for implementation is
calculated. Subsequently, the operators employed within the

model are identified, and the time consumed by each operator
is determined by referencing the knowledge base. These
single-operator delays are then aggregated to estimate the
running time of the model.

For the case running over GPU, the model inference time
is not simply accumulating the running time of the included
operators. Instead, it consists of CPU instruction in-queue
time, CPU to GPU, and GPU inference.

IX. EVALUATION TEST

In this section, we evaluate the performance of the proposed
LEOEdge. We first provide the settings of our test and then
investigate the results of the evaluation.

A. Settings

We consider a LEO constellation consisting of 10 LEO
satellites. The orbit height of these satellites ranges from
500km to 700km, the communication time between each
satellite and GS ranges from 92.75 to 104.56 minutes. The
satellite-ground data rate is set at 10Mbps based on our obser-
vation from the satellite experiment system deployed at the
Miyun GS. The link capacity between satellites is 100Mbps.
To simulate the heterogenous computation capability on LEO
constellations, the computation units on satellites include CPU,
GPU, and NPU. We select these processors from various
mainstream ARM architecture processors including the Kirin
and Snapdragon series, among others. The ground-edge server
clusters consist of 3 computing servers and each server has
4 containers to process the received inference tasks. Each
container uses a 4 cores x86 CPU with 4Ghz frequency.

For the AI inference, we apply two networks
MobileNetV3 [32] and ShuffleNetV2 [33].
MobilenetV3 is a lightweight deep neural network
architecture optimized for mobile and embedded vision
applications. ShufflenetV2 is a highly efficient CNN
architecture designed for mobile and embedded devices with
limited computational resources. As an evolution of the
original ShuffleNet, ShuffleNetV2 focuses on improving
both speed and accuracy while minimizing memory and
computational usage.

B. Adaptive Modeling Results

The main purpose of adaptive modeling is to select a
model with a suitable size that can be executed within the
time constraints while also ensuring accuracy. We mainly
test the execution time and accuracy of MobileNetV3
and ShuffleNetV2 with and without the use of adaptive
modeling. Table II shows the results of MobileNetV3.
By our data, the original accuracy of the MobileNetV3
is 72%. When applying the adaptive modeling, we set the
delay constraint is set to [15, 20]ms. The results show that
the adaptive modeling controls all generated models’ latency
within the target range and ensures the accuracy close to
the original model. In several cases, adaptive modeling can
even achieve better inference accuracy. Especially, the gen-
erated models running over new version processors such as
Snapdragon 8 Gen 1, Google Tensor, and Kirin 900. This is

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:10:12 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: LEOEdge: A SATELLITE-GROUND COOPERATION PLATFORM FOR THE AI INFERENCE 47

TABLE II
MOBILENETV3 PERFORMANCE

TABLE III
SHUFFLENETV2 PERFORMANCE

Fig. 6. Loss variants comparison: gradient descent vs. Nestrov accelerate
gradient.

mainly because these processors are optimized for handling
the AI computations. Similar results can be observed in the
case of using ShuffleNetV2, which is shown in Table III.
The original accuracy of the ShuffleNetV2 is 69.1% and
time constraint for the time execution is set to [15, 20]ms. The
adaptive modeling effectively reduced the execution model’s
runtime on these performance-constrained processors, i.e., for
the Snapdragon 835, the execution time was reduced from
34.2ms to 19.2ms. Furthermore, the accuracy of the pruned
model remains around 69%, ensuring that the model’s infer-
ence performance is maintained while eliminating unnecessary
computational overhead.

We also test the performance of the search algorithm in
terms of convergence, we compare the NAG with the con-
ventional gradient descent used in NAS. As shown in Fig. 6,
NAG accelerates convergence to the optimal solution, as the
loss value is lower than that of the gradient descent during
the training. NAG predicts the next position based on the

current momentum term (i.e., the direction and magnitude of
the previous gradients), and then calculates the gradient at
this anticipated position rather than at the current location.
This foresight allows NAG to adjust its parameter updates
more smoothly, avoiding excessive corrections, and thereby
accelerating the learning process.

C. Task Offloading Results

We compare the results of offloading scheme in LEOEdge
with three different offloading logic: (1) Threshold-based
scheme offloads all AI inference computations with an esti-
mated execution time higher than a given threshold. In our
experiments, tasks with a single inference time exceed-
ing 20ms are offloaded to the edge servers at the GS;
(2) Workload-based scheme offloads all inference computa-
tions to the edge servers before reaching the given workload
constraints. By observing the actual operation of the system,
we find that when the CPU utilization remains below 50%,
the execution time of the model is not significantly impacted.
Consequently, offloading strategies need to aim to keep the
average CPU load under 50% as much as possible. Hence,
when the average CPU occupancy is lower than 50%, the satel-
lite applying workload-based scheme performs task offloading
to the edge servers; (3) Multi-agent reinforcement learning
(MARL) method [34] applies collaborative training of multiple
learning agents to output the task offloading scheme. Each
satellite acts as an agent in a MARL setup, independently
deciding whether to offload the generated tasks to an edge
server based on changes in the environment. (4) Asynchronous
advantage actor-critic (A3C) utilises each individual satellite
as an agent to independently explore and learn task loading
during training. Our investigation primarily focuses on sev-
eral key aspects: variations in workload and execution time.
We also investigate the communication overhead of LEOEdge.

1) Workload Results: The workload of the edge server is an
important metric to measure the task offloading performance.
A lower workload on the edge server sides indicates the edge
computation resources are not fully utilized. On the other hand,
a higher workload means that most of the processing units
on the edge server are busy and cannot timely the requests.
We consider three different task arrival rates in our exper-
iments: (1) Light, where each satellite randomly generates
tasks based on the task arrival rate from the dataset during
the 21:00-00:00 period. During this time, the task volume is
relatively low, with each node generating approximately one
task every 5-10 seconds; (2) Normal, where each satellite ran-
domly generates tasks based on the task arrival rate from the
dataset during the 14:00-18:00 period. In this timeframe, each
node generates roughly one inference task every 2 seconds;
(3) Heavy, where each satellite randomly generates tasks
based on the task arrival rate from the dataset during the
18:00-20:00 period. This period experiences frequent requests,
with each node generating approximately one inference task
every second.

Fig. 7 presents the variation of workload over time, dis-
played in seconds, for four different task offloading schemes.
The threshold-based scheme has the lowest workload, as the

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:10:12 UTC from IEEE Xplore. Restrictions apply.

48 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 43, NO. 1, JANUARY 2025

Fig. 7. Edge server workload comparison.

Fig. 8. AI inference latency comparison.

corresponding blue curve is about 0.2, 0.3, and 0.4 dur-
ing the simulation in the case of light, normal, and heavy,
respectively. The average CPU utilization below 20% implies
that the majority of CPUs are in an idle state and are not
being fully utilized. Given that user requests arrive randomly,
scheduling based on a fixed threshold struggles to adapt to
the dynamic changes of the network. Furthermore, a higher
threshold value may lead to excessive CPU utilization, which
can adversely affect the efficiency of task execution. The edge
server load for the other three strategies are controlled within
a relatively reasonable range, i.e., around an average CPU
utilization of 50%. This ensures the full utilization of edge
server resources while also being able to cope with burst
arrival requests. However, when in the heavy task arrival case,
the edge server load approaches 100% using the MARL-based
method, placing a significant burden on the edge servers. A3C
is only a slight improvement over MARL. LEOEdge employs a
probabilistic constraint to limit the load, the results still closely
resemble a hard value approach, akin to the workload-based
scheme, thereby validating the effectiveness of such a method.
The workload-based method forcibly limits the system’s load
to 50%, maintaining a load rate of around 50% even under
high task arrival rates, but this is achieved at the expense of
compromising AI inference performance.

2) Average Execution Time: Since the primary purpose of
introducing edge computing is to offload the inference model
execution from satellites with unacceptably high execution
model time to powerful edge servers, the system’s average
execution time is extremely important when assessing offload-
ing performance. The shorter average execution time means
that the nodes can process data faster, which is especially
important for real-time or near-real-time application scenarios.
The average execution time is calculated by aggregating the
execution times of all AI inference tasks within this period and
then taking the average. Fig. 8 shows the average execution

times of four offloading schemes across three case of task
arrival. The purpose curve corresponding to the case without
applying edge serves as a benchmark in the test. As illustrated
in the graph, all curves are lower than the case without
edge computing, showing that introducing edge computing
can indeed reduce the model execution time. We observe
that LEOEdge achieves the shortest average task process-
ing time across all three cases. This advantage stems from
LEOEdge’s hierarchical distributed optimization algorithm,
which dynamically schedules tasks based on the load condition
of each layer to closely approximate the optimization goal.
The threshold-based scheme steadily maintains the execu-
tion time around 200 milliseconds, benefiting from the fact
that all high-latency tasks are scheduled to be computed at
the edge, thereby ensuring consistent execution times. The
other two strategies result in a higher execution time. The
workload-based scheme does not take into account the local
execution time of tasks when scheduling. This leads to situa-
tions where tasks that would have a short execution time on
the smartphone end up being allocated to edge servers, where
they take longer to execute. A possible explanation for the poor
performance of the reinforcement learning method is that the
model currently used may not accurately capture the dynamics
of the system, leading to a failure to learn the optimal strategy.
Considering the system variations, training a learning model
that can exactly capture the system dynamic and output the
optimal offloading strategy is difficult. Additionally, since A3C
operates through separate environment interactions for each
agent, it tends to be less efficient in terms of execution time
compared to MARL approaches.

3) Communication Overhead: One of the primary moti-
vations for proposing LEOEdge is to support AI inference
capabilities in mobile apps with a very large user base.
Therefore, we investigate the communication overhead (mea-
sured by the number of workload information messages sent)

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:10:12 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: LEOEdge: A SATELLITE-GROUND COOPERATION PLATFORM FOR THE AI INFERENCE 49

Fig. 9. Communication overhead.

when applying LEOEdge. Fig. 9 shows the communication
overhead introduced by different layers of optimization: the
communication overhead between satellites and LBS, between
LBS and servers, between servers and containers, respectively.
We can see that the communication overhead between servers
and containers is the highest. This is due to the large number
of containers, requiring the server to frequently interact with
these containers to determine task allocation based on the load
condition of each container. In contrast, the communication
overhead between servers and LBS, as well as between LBS
and satellites, is relatively low. Especially, the communication
overhead between LBS and satellites is mostly under 1000
and linearly related to the task volume. In the satellite-to-
ground scenario, since the bandwidth of the space-to-ground
link is extremely valuable, the main communication overhead
comes from the communication between satellites and ground
stations. Compared to this, the internal communication over-
head within the server cluster is almost negligible. Therefore,
even though the communication overhead between servers
and containers is higher, it does not significantly impact the
system. Thus, LEOEdge can effectively reduce communication
overhead while ensuring scheduling performance.

X. CONCLUSION

To support high-performance AI inference within LEO
satellite constellation, LEOEdge consists of an adaptive mod-
eling scheme to dynamically select the inference model for
satellites with different computation capabilities; a distributed
task offloading scheme based on our formulated layered opti-
mization to select an optimal place to execute the AI inference
tasks; a data seamless transmission scheme to predict the satel-
lite movement and select the transmission path ensuring the
data successfully delivered. Evaluation of LEOEdge has shown
how our proposed schemes accelerate the AI inference for
smartphones, and demonstrated the necessity and superiority
of included technologies. In the future, we plan and consider
the implementation of LEOEdge.

REFERENCES

[1] P. Yue et al., “Low Earth orbit satellite security and reliability: Issues,
solutions, and the road ahead,” IEEE Commun. Surveys Tuts., vol. 25,
no. 3, pp. 1604–1652, 3rd Quart., 2023.

[2] Spacex. (2023). Second Generation Starlink Satellites. [Online].
Available: https://api.starlink.com/public-files/Gen2StarlinkSatellites.pdf

[3] G. Furano et al., “Towards the use of artificial intelligence on the edge
in space systems: Challenges and opportunities,” IEEE Aerosp. Electron.
Syst. Mag., vol. 35, no. 12, pp. 44–56, Dec. 2020.

[4] B. Shang, Y. Yi, and L. Liu, “Computing over space-air-ground inte-
grated networks: Challenges and opportunities,” IEEE Netw., vol. 35,
no. 4, pp. 302–309, Jul. 2021.

[5] C. Qiu, H. Yao, F. R. Yu, F. Xu, and C. Zhao, “Deep Q-learning aided
networking, caching, and computing resources allocation in software-
defined satellite-terrestrial networks,” IEEE Trans. Veh. Technol., vol. 68,
no. 6, pp. 5871–5883, Jun. 2019.

[6] D. Zhou, M. Sheng, Y. Wang, J. Li, and Z. Han, “Machine learning-
based resource allocation in satellite networks supporting Internet of
Remote Things,” IEEE Trans. Wireless Commun., vol. 20, no. 10,
pp. 6606–6621, Oct. 2021.

[7] X. Gao, R. Liu, and A. Kaushik, “Virtual network function placement in
satellite edge computing with a potential game approach,” IEEE Trans.
Netw. Service Manag., vol. 19, no. 2, pp. 1243–1259, Jun. 2022.

[8] Q. Tang, Z. Fei, B. Li, and Z. Han, “Computation offloading in LEO
satellite networks with hybrid cloud and edge computing,” IEEE Internet
Things J., vol. 8, no. 11, pp. 9164–9176, Jun. 2021.

[9] C. Ding, J.-B. Wang, H. Zhang, M. Lin, and G. Y. Li, “Joint optimization
of transmission and computation resources for satellite and high altitude
platform assisted edge computing,” IEEE Trans. Wireless Commun.,
vol. 21, no. 2, pp. 1362–1377, Feb. 2022.

[10] M. J. Veyette et al., “AI/ML for mission processing onboard satellites,”
in Proc. AIAA SCITECH Forum, Jan. 2022, p. 1472.

[11] S. Yu, X. Gong, Q. Shi, X. Wang, and X. Chen, “EC-SAGINs: Edge-
computing-enhanced space–air–ground-integrated networks for Internet
of vehicles,” IEEE Internet Things J., vol. 9, no. 8, pp. 5742–5754,
Apr. 2022.

[12] M. Azami, N. Orger, V. Schulz, T. Oshiro, and M. Cho, “Earth
observation mission of a 6U CubeSat with a 5-meter resolution for wild-
fire image classification using convolution neural network approach,”
Remote Sens., vol. 14, no. 8, p. 1874, Apr. 2022.

[13] M. Elmahallawy and T. Luo, “AsyncFLEO: Asynchronous federated
learning for LEO satellite constellations with high-altitude platforms,”
in Proc. IEEE Int. Conf. Big Data, Dec. 2022, pp. 5478–5487.

[14] M. Elmahallawy and T. Luo, “Optimizing federated learning in
LEO satellite constellations via intra-plane model propagation and
sink satellite scheduling,” in Proc. IEEE Int. Conf. Commun. (ICC),
May/Jun. 2023, pp. 3444–3449.

[15] G. Giuffrida et al., “CloudScout: A deep neural network for on-board
cloud detection on hyperspectral images,” Remote Sens., vol. 12, no. 14,
p. 2205, 2020.

[16] N. Razmi, B. Matthiesen, A. Dekorsy, and P. Popovski, “On-board
federated learning for dense LEO constellations,” in Proc. IEEE Int.
Conf. Commun., May 2022, pp. 4715–4720.

[17] Z. Qin, H. Yao, T. Mai, D. Wu, N. Zhang, and S. Guo, “Multi-agent
reinforcement learning aided computation offloading in aerial computing
for the Internet-of-Things,” IEEE Trans. Services Comput., vol. 1, no. 1,
pp. 1–12, Oct. 2022.

[18] L. Cheng, G. Feng, Y. Sun, M. Liu, and S. Qin, “Dynamic computa-
tion offloading in satellite edge computing,” in Proc. IEEE Int. Conf.
Commun., May 2022, pp. 4721–4726.

[19] X. Cao et al., “Edge-assisted multi-layer offloading optimization of LEO
satellite-terrestrial integrated networks,” IEEE J. Sel. Areas Commun.,
vol. 41, no. 2, pp. 381–398, Feb. 2022.

[20] R. Xie, Q. Tang, Q. Wang, X. Liu, F. R. Yu, and T. Huang, “Satellite-
terrestrial integrated edge computing networks: Architecture, challenges,
and open issues,” IEEE Netw., vol. 34, no. 3, pp. 224–231, May 2020.

[21] Y. Zhang, C. Chen, L. Liu, D. Lan, H. Jiang, and S. Wan, “Aerial edge
computing on orbit: A task offloading and allocation scheme,” IEEE
Trans. Netw. Sci. Eng., vol. 10, no. 1, pp. 275–285, Jan. 2023.

[22] D. Vasisht, J. Shenoy, and R. Chandra, “L2D2: Low latency distributed
downlink for LEO satellites,” in Proc. Conf. Appl., Technol., Archit.,
Protocols Comput. Commun., 2021, pp. 151–164.

[23] Z. Lai, H. Li, Q. Zhang, Q. Wu, and J. Wu, “Cooperatively constructing
cost-effective content distribution networks upon emerging low earth
orbit satellites and clouds,” in Proc. IEEE 29th Int. Conf. Netw. Protocols
(ICNP), Nov. 2021, pp. 1–12.

[24] V. Bhosale, K. Bhardwaj, and A. Gavrilovska, “Toward loosely coupled
orchestration for the LEO satellite edge,” in Proc. 3rd USENIX
Workshop Hot Topics Edge Comput., 2020, pp. 1–26.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:10:12 UTC from IEEE Xplore. Restrictions apply.

50 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 43, NO. 1, JANUARY 2025

[25] P. McEnroe, S. Wang, and M. Liyanage, “A survey on the convergence
of edge computing and AI for UAVs: Opportunities and challenges,”
IEEE Internet Things J., vol. 9, no. 17, pp. 15435–15459, Sep. 2022.

[26] K. Van Beeck, T. Ophoff, M. Vandersteegen, T. Tuytelaars, D. Scara-
muzza, and T. Goedemé, “Real-time embedded computer vision on
UAVs: Uavision2020 workshop summary,” in Comput. Vision–ECCV
2020. Cham, Switzerland: Springer, 2020, pp. 665–674.

[27] A. Menshchikov et al., “Real-time detection of hogweed: UAV platform
empowered by deep learning,” IEEE Trans. Comput., vol. 70, no. 8,
pp. 1175–1188, Aug. 2021.

[28] X. Hu, K.-K. Wong, K. Yang, and Z. Zheng, “UAV-assisted relaying and
edge computing: Scheduling and trajectory optimization,” IEEE Trans.
Wireless Commun., vol. 18, no. 10, pp. 4738–4752, Oct. 2019.

[29] M. A. Qureshi, E. Lagunas, and G. Kaddoum, “Reinforcement learning
for link adaptation and channel selection in LEO satellite cognitive
communications,” IEEE Commun. Lett., vol. 27, no. 3, pp. 951–955,
Mar. 2023.

[30] Magister Solutions Ltd. (2014). Satellite Network Simulator 3. [Online].
Available: https://www.sns3.org/

[31] C. Jiang and X. Zhu, “Reinforcement learning based capacity manage-
ment in multi-layer satellite networks,” IEEE Trans. Wireless Commun.,
vol. 19, no. 7, pp. 4685–4699, Jul. 2020.

[32] A. Howard et al., “Searching for MobileNetV3,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1314–1324.

[33] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
guidelines for efficient CNN architecture design,” in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2018, pp. 116–131.

[34] J. Lai, H. Liu, Y. Sun, J. Zhu, W. Ma, and L. Gan, “Multi-agent deep
reinforcement learning based computation offloading approach for LEO
satellite broadband networks,” in Proc. IEEE Symp. Comput. Commun.
(ISCC), Jul. 2023, pp. 1435–1440.

Su Yao received the Ph.D. degree from the National
Engineering Laboratory for Next Generation Inter-
net, Beijing Jiaotong University. Currently, he is
an Associate Researcher with Beijing National
Research Center for Information Science and Tech-
nology (BNRist), Tsinghua University. His research
interests include future network architecture and the
IoT security.

Yiying Lin received the B.S. degree in com-
puter science and technology from Beijing Forestry
University in 2024. He is currently pursuing the
master’s degree with the State Key Laboratory of
Networking and Switching Technology. His research
interests include edge computing and multimedia
communications.

Mu Wang received the Ph.D. degree in computer
technology from Beijing University of Posts and
Telecommunications (BUPT) in 2020. He is cur-
rently an Associate Researcher with the State Key
Laboratory of Network and Switching Technology.
His research interests include wireless communica-
tions and multimedia communications.

Ke Xu (Fellow, IEEE) received the Ph.D. degree
from the Department of Computer Science and
Technology, Tsinghua University. He is currently
a Full Professor with Tsinghua University. He has
published more than 100 technical articles and holds
20 patents in the research areas of next generation
internet and P2P systems.

Mingwei Xu (Senior Member, IEEE) received the
B.Sc. and Ph.D. degrees from Tsinghua University.
He is currently a Full Professor with the Depart-
ment of Computer Science, Tsinghua University. His
research interests include computer network archi-
tecture, high-speed router architecture, and network
security.

Changqiao Xu (Senior Member, IEEE) is currently
a Professor with the State Key Laboratory of Net-
working and Switching Technology and the Director
of the Network Architecture Research Center, BUPT.
He has edited two books and published more
than 200 papers in prestigious international journals
and conferences, including IEEE/ACM TRANS-
ACTIONS ON NETWORKING (IEEE ToN), IEEE
TRANSACTIONS ON MOBILE COMPUTING, IEEE
INFOCOM, and ACM Multimedia. His research
interests include future internet technology, mobile

networking, multimedia communications, and network security. He was a
number of international conferences and workshops as the co-chair and a
TPC member. He is currently the Editor-in-Chief of Transactions on Emerging
Telecommunications Technologies (Wiley).

Hongke Zhang (Fellow, IEEE) received the Ph.D.
degree in communication and information systems
from the University of Electronic Science and Tech-
nology of China, Chengdu, China, in 1992. He is
currently a Professor with the School of Electronic
and Information Engineering, Beijing Jiaotong Uni-
versity, Beijing, China, where he currently directs
the National Engineering Center of China on Mobile
Specialized Network. He is also an Academician
of China Engineering Academy, Beijing, and the
Co-Director of the PCL Research Center of Net-

works and Communications, Peng Cheng Laboratory, Shenzhen, China. His
current research interests include architecture and protocol design for the
future internet and specialized networks. He currently serves as an Associate
Editor for IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGE-
MENT and IEEE INTERNET OF THINGS JOURNAL.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:10:12 UTC from IEEE Xplore. Restrictions apply.

