
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Secure Fault Localization in Path Aware Networking
Songtao Fu, Qi Li, Senior Member, IEEE , Xiaoliang Wang, Su Yao, Xuewei Feng,

Ziqiang Wang, Xinle Du, Kao Wan and Ke Xu, Fellow, IEEE

Abstract—Secure data forwarding is critical for users to meet their requirements. In this paper, we propose D3 (Demon Detector in
Data Plane), a source-driven, secure fault localization mechanism, which empowers the source to localize faulty link in Path Aware
Networking, thus circumventing faulty link to guarantee secure data forwarding. D3 utilizes the source to instruct the on-path routers,
thus empowering it to detect whether the on-path routers forward the packet as expected. Compared with existing schemes that are
difficult to be deployed in practice due to the heavy storage, computation, and communication overhead, D3 offloads most of the
on-path router’s storage and computation overhead, thus dramatically improving the deployment efficiency. Particularly, the length of
the additional packet header in D3 is 2-5 times less than the state-of-the-art mechanisms, thus having a low communication overhead.
Besides that, the destination in D3 could keep stateless processing, thus having backward compatibility and eliminating the opportunity
for DoS attacks toward a stateful destination. The BMv2 and Barefoot Tofino hardware evaluations show that D3 could achieve high
fault localization accuracy and process the packet at line rate.

Index Terms—Path Aware Networking, Data Plane, Fault Localization.

✦

1 INTRODUCTION

THE promise and potential of applications, ranging from
Internet-of-Things (IoT) to Vehicular Networks [1] [2],

have prompted users to be concerned about whether the
network forwards the packet according to their require-
ments since the network protocols with flawed designs
have been found to be a major cause of security issues
[3]–[15]. As an Autonomous System (AS) is a trust and
fate-sharing unit [16], we denote an AS as a domain. In
an inter-domain context, the packet from the source to the
destination user (e.g., end host) transits several ASes. The
emerging Path Aware Networking (PAN) [17] [18] could
facilitate the source to select the forwarding path. The PANs’
architecture comprises two essential components: i) the
neighboring nodes exchange path information in the control
plane (with low-bandwidth, large storage and computation
resources), and ii) the data packets (DAT) are forwarded in

• Songtao Fu, Xuewei Feng, Xinle Du and Ke Xu are with the Department
of Computer Science and Technology, Beijing National Research Center for
Information Science and Technology (BNRist), Tsinghua University, Bei-
jing, 100084, China, Ke Xu is also with Zhongguancun Laboratory, Bei-
jing 100094, China (e-mail: {fust18, fengxw18, dxl18}@tsinghua.org.cn,
xuke@tsinghua.edu.cn)

• Qi Li is with the Institute for Network Sciences and Cyberspace, Bei-
jing National Research Center for Information Science and Technol-
ogy (BNRist), Tsinghua University, Beijing, 100084, China, and also
with the Zhongguancun Laboratory, Beijing 100094, China (e-mail:
qli01@tsinghua.edu.cn)

• Xiaoliang Wang is with the Capital Normal University, Beijing, 100089,
China (e-mail: wangxiaoliang@cnu.edu.cn)

• Su Yao is with the Beijing National Research Center for Information
Science and Technology (BNRist), Tsinghua University, Beijing, 100084,
China (e-mail: yaosu@tsinghua.edu.cn)

• Ziqiang Wang is with the Southeast University, Nanjing, 211189, China
(e-mail: ziqiangwang@seu.edu.cn)

• Kao Wan is with the Peng Cheng Laboratory, Shenzhen, 518000, China
(e-mail: sonicwk@hotmail.com)

Manuscript received **, 2022. This work was in part supported by the National
Key R&D Program of China with No. 2022YFB3102301, the China National
Funds for Distinguished Young Scientists with No. 61825204, the NSFC
Project with No. 61932016, No. 62132011, and No. 62132009, the Beijing
Outstanding Young Scientist Program with No. BJJWZYJH01201910003011.
(Corresponding authors: Ke Xu and Su Yao.)

the data plane (with high-bandwidth, limited storage and
computation resources [19]) along the discovered paths. The
paths are exposed to hosts (in SCION [17]) or routers (in SR
[18]), allowing them to select a path and embed it in the
packet header [20]. Generally, the source-selected paths are
a forwarding policy that each on-path router should follow.
But an adversary in a specific AS might violate the forward-
ing policy. For example, a malicious AS might corrupt the
packet by dropping, delaying, modifying, fabricating the
packets, or redirecting the packets to an unexpected AS
[21]. The source on the Internet needs a fault localization
mechanism to localize the faulty link1, then circumvent the
faulty link to achieve secure data forwarding.

The fault localization mechanisms like secure traceroute
provide some assistance in debugging network problems
[22]. A drawback of them is that they only give feedback
on probe packets, not data packets (DATs). Neither the
destination nor the routers could verify the DAT and reply
to the source with the feedback. On the other hand, fault
localization mechanisms (e.g., AudIt [23] and Fatih [24]) aim
to localize the faulty entity based on the DAT , lack the
authentication of the DAT . As a result, they fail to meet
the security requirements of the detector (e.g., source or
other entities) since on-path routers are unable to verify
a Message Authentication Code (MAC) embedded in the
packet by the detector.2 To prevent the adversary from
manipulating the packet, the on-path router needs to store
the fingerprints (e.g., the hash) of packets, but it incurs
prohibitively expensive storage overhead in the router.

There are some secure fault localization mechanisms,
which not only localize the faulty link based on the DAT

1. The faulty link includes two neighbor AS border routers and the
link between the two routers, at least one border router, or the link is
faulty.

2. This paper calls the source user who localizes the faulty link on the
forwarding path as detector. The fault localization is nearly the same
as the failure localization [25]. Generally, the source or destination user
is the end host.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3392486

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 14,2025 at 07:11:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

but also incorporate a per-packet MAC (i.e., mark in this
paper) to ensure a strong security guarantee. ShortMAC [26]
is a secure fault localization mechanism, but it could not be
utilized in the inter-domain context due to the extremely
heavy storage overhead in the data plane. Faultprints [27]
and RFL [28] are secure fault localization mechanisms in
the inter-domain context. They have relatively low storage
overhead in the data plane (e.g., 46.8 MB per 10 Gbps link).
However, they still have high computation overhead in the
data plane.

D3 (Demon Detector in Data Plane) in edge cloud [29] could
meet the localization requirements between the servers in
the edge and remote cloud with lightweight overhead.
However, the requirements for secure fault localization in
PAN differ from those in the edge cloud [30]. Consequently,
D3 in edge cloud could not be utilized in PAN for the follow-
ing reasons: (1) It lacks backward compatibility, impeding
the ability to initiate localization with a legacy destination
host as it assumes the destination has been upgraded. (2)
It lacks the scalability to support a large number of source
hosts since it presets the dynamic key 3 of source hosts in
each on-path router, which incurs a high storage overhead.
(3) It lacks robustness since it allows adversaries to launch
DoS attacks toward the stateful destination.

In this paper, we propose a source-driven secure fault
localization mechanism named D3 via extending the design
of D3 in edge cloud. Compared with D3 in edge cloud, our
contributions are as follows:

• We utilize a source-driven fault localization mecha-
nism to maintain backward compatibility with legacy
routers and destination hosts. D3 has the potential to
empower the source to locate the faulty link solely de-
pending on routers with the capability required by the
D3 design. Furthermore, the source could achieve fault
localization without the participation of the destination
host, thus improving the robustness by preventing the
DoS attacks towards the stateful destination host.

• We utilize a hierarchical key distribution system to
decrease the storage overhead, thereby enhancing scal-
ability. An edge router (named agent) manages the
source hosts in the same subnet. Each on-path router
only needs to store the dynamic keys for the agents,
resulting in significantly lower storage overhead con-
cerning dynamic keys in the data plane. Additionally,
D3 has the same proof 4 storage overhead, commu-
nication overhead (20 B additional packet header),
and computation overhead (one lightweight symmetric
cryptographic operation) in the data plane compared to
D3 in edge cloud.

• Evaluation in BMv2 and Barefoot Tofino hardware.
The evaluation in BMv2 testifies that the localization
accuracy could achieve 95%. Meanwhile, the evaluation
in Barefoot Tofino hardware testifies that D3 could up-
date 10, 000 dynamic keys within 1 second, and process
the packet at line rate.

The rest of the paper organizes as follows: In the next
section, we present the background, adversary model, and

3. In this paper, the dynamic key is the symmetric key to calculate
the mark.

4. The proof is the statistic information in each on-path router, e.g.,
the counter of packets in an epoch.

our assumptions. Sec. 3 presents the design of D3 at a high
level, Sec. 4 details the D3, and sec. 5 analyzes its character-
istics and benefits. Sec. 6 presents the implementation and
the evaluation. Sec. 7 discusses the deployment of D3. Sec.
8 describes related works. We conclude the paper in the last
section.

2 PROBLEM SETTING
We first describe the background of fault localization in the
PAN, then discuss the adversary model of fault localization.
And we describe the requirements of the localization and
some critical assumptions.

2.1 Background

To guarantee secure data forwarding, the source in the PAN
could achieve secure fault localization based on the actual
data traffic.

Barak et al. elaborate on the significance of a secure
fault localization’s key infrastructure, as highlighted in their
work [25]. Specifically, secure fault localization plays a
crucial role in defending against adversaries through the
utilization of a symmetric key shared between the detector
(e.g., the source) and each on-path router (i.e., AS bor-
der router). The key infrastructure facilitates a confidential
means of sharing dynamic keys between the routers and the
detector. In essence, the detector can localize the faulty link
based on the proof provided by each on-path router’s reply
packets. The policy governing these proofs is pivotal for
optimal performance. Barak et al. delve into the overhead
associated with two proof policies: per-packet and statis-
tical fault localization. In per-packet fault localization, the
destination and each router respond to the source with an
ACK containing nested onion marks, resulting in significant
computation and communication overhead. On the other
hand, statistical fault localization (e.g., Symmetric Secure
Sampling) offers a lower overhead by having the destination
and each router reply to the source for portions of packets
at specified intervals (referred to as epochs in this context).
However, each on-path router in Symmetric Secure Sam-
pling must store packet segments and respond to the source,
leading to notable computation and storage overhead. To
address these issues, ShortMAC [26] validates each packet
using short marks and maintains flow counters as proof
in the data plane. It transmits the counters to the source at
the end of each epoch. Despite these efforts, there remains
heavy storage overhead in inter-domain scenarios, reaching
up to 46 GB for a 100 Gbps link in extreme cases.

Faultprints [27] is the first secure fault localization in
an inter-domain context. Fig. 1 (a) presents its basic pro-
cedure. Generally, The procedure enforced by the source
(S) includes: ① Data (DAT) forwarding: S instructs each
on-path router to record the proof (A Bloom Filter to
record whether processed a specific packet). ② End-to-end
corruption ratio with ACK: An epoch has a certain number
of packets (e.g., 4000). At each epoch, S evaluates the end-to-
end corruption ratio based on the ACK from the destina-
tion (D). ③ probe and reply: If the end-to-end corruption
ratio indicates there might be an adversary on the path,
the source receives the proof with the probe and reply

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3392486

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 14,2025 at 07:11:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

TABLE 1
The properties of different fault localization mechanisms

St
or

ag
e

ov
er

he
ad

N
o

A
SY

in
da

ta
pl

an
e

A
dd

iti
on

al
pa

ck
et

he
ad

er

In
te

r-
do

m
ai

n
su

pp
or

t

ShortMAC [26] 46000 ✗ 2 ✗
Faultprints [27] 468 ✗ 96 ✓

RFL [28] 468 ✗ 58 ✓
D3 in edge cloud [29] 3.84×N ✓ 20 ✓

D3 3.84× L ✓ 20 ✓

1. Storage overhead represents the data plane storage overhead
(MB) per 100 Gbps link, No ASY in data plane represents
no per-session 5 asymmetric cryptographic operation in data
plane, Additional packet header represents the length of the
additional packet header (B) with the path length of 5, Inter-
domain support represents supportting inter-domain context.
2. N represents the number of hosts in an AS, L represents
the number of agents in an AS, L << N .

mechanism towards each router. The number of control
packets (probe and reply packets) for R1, R2, R3, R4 are
n1, n2, n3 and n4 respectively. Therefore, there have O(n)
control packets. An example of Faultprints operation with 4
ASes on the forward path includes: The source sends 4000
packets per epoch in the data plane, and instructs the on-
path router to sample a packet (store whether it processed
a packet in Bloom Filter) according to the marks nested
in the packet header. If the source receives a valid ACK
within a certain timeout, e.g., a round-trip time (RTT), the
source does nothing. Or else, the source sends 400 probe
packets (10% of 4000 DAT packets) along the forward path
and receives 1600 reply packets. The source localizes the
faulty link based on the reply packets. RFL has a similar
procedure except that it records the proof (Bloom Filter)
for each flow, which incurs a little more proof storage
overhead, and probe and reply once at each epoch with
asymmetric cryptographic operation, which incurs much
more computation overhead.

In general, state-of-the-art secure fault localization mech-
anisms in PAN have limitations for the following reasons:
Firstly, they are all incompatible with legacy destinations,
making it nontrivial to upgrade each destination the source
wants to communicate with. Secondly, as indicated in TA-
BLE 1, they entail heavy storage (e.g., 46 GB per 100
Gbps link in ShortMAC) and computational overhead (e.g.,
Faultprints and RFL require per-session asymmetric cryp-
tographic operations) in each router’s data plane. Thirdly,
the communication overhead is relatively high (e.g., The
additional packet headers of Faultprints and RFL are 96 B
and 58 B for a path length of 5, respectively). Lastly, there is
little incentive for ISPs to upgrade their routers (e.g., MAC
operations such as AES are challenging to implement in
router hardware [31]).

The insight of D3 in edge cloud is it separates the control
plane and data plane in terms of cryptographic operation
and proof storage. Compared with Faultprints, it decreases
the computation overhead since the on-path router prepares
the dynamic key for the source (e.g., servers in edge or

① DAT

(a) Faultprints

R2 R3 R4

③ probe and reply

② ACK

R1 DS

n1

…

n2
n3 n4

… … …

② ACK

R3

(b) D3 in edge cloud

③ probe and reply

DS R2 R3 R4R1
① DAT

② ACK

DS R2 R4R1
① DAT A

ACK

(c) D3

② reply

Control packet Host Agent Router

Fig. 1. An example of fault localization in different mechanisms. S and
D represent the source and destination host, Ri represents an ingress
border router of an AS, A represents an agent, which is an edge router
of a subnet, n1, n2, n3 and n4 represent the number of control packets
(probe and reply packets).

remote cloud), then it does not need to achieve per-session
asymmetric cryptographic operation in data plane. Besides
that, it offloads the proof storage (Counter information)
overhead to the control plane.

As shown in Fig. 1 (b), an example of D3 in edge cloud [29]
compared with Faultprints is as follows: The source sends
4000 DAT packets at each epoch, and nests the instruction
in the mark to instruct the on-path router to count the
number of sampling packet. Each on-path router only sends
the packet header to the control plane after a lightweight
verification if it should sample a specific packet. In the
event that the source does not receive an ACK from the
destination following a timeout (e.g., RTT), it dispatches 4
probe packets towards the 4 on-path routers and retrieves
4 reply packets. Subsequently, it localizes the faulty link. It
generates only O(1) control packets per epoch.

However, D3 in edge cloud lacks the following properties:
(1) backward compatibility, (2) scalability, and (3) robust-
ness. It could not be directly implemented in PAN due to
these limitations. Therefore, D3 improves the design of D3
in edge cloud as follows: (1) Source-driven localization to
keep backward compatibility. D3 does not need the ACK
and probe. It achieves the localization only based on each
on-path router’s reply at each end of an epoch. (2) Hier-
archical architecture to support scalability. In D3, an agent
first verifies the source’s instruction with the symmetric
key between the source and the agent, then updates the
instructions with the dynamic key between the agent and
the on-path router. Each on-path router only needs to store
the dynamic key for the agents. (3) Flexible localization to
improve the robustness. In D3 in edge cloud, the destination

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3392486

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 14,2025 at 07:11:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

needs to keep stateful for all the sources. It gives the chance
for an adversary to launch the DoS attack in PAN. The
destination in D3 keeps stateless to avoid the DoS attack
from the adversaries, it could also keep stateful to send
the ACK with the end-to-end corruption ratio for some
authenticated source (e.g., in the same enterprise) to defend
against the coward attacks.

As shown in Fig. 1 (c), an example of D3 compared
with D3 in edge cloud is as follows: The source sends 4000
DAT packets at each epoch, and nested the sampling
instruction in the mark. The agent (an edge router of a
subnet) updates the mark and instructs the on-path router
to sample a specific packet (recording the Counter of each
sampling packet) after successful verification. In order to
reduce proof storage overhead in the data plane, consid-
ering that each epoch takes hundreds of milliseconds, D3
records per-session counters in the control plane. Each on-
path router sends the packet header to the control plane
after a lightweight verification and sends 4 reply packets
with Counter information to the source at each end of an
epoch. Then the source localizes the faulty link based on the
4 reply packets.

2.2 Adversary model

Considering a network consisting of (1) key distribution
server (KDS), (2) host (source and destination), (3) agent,
and (4) on-path routers. We assume that the KDS, host, and
agent are honest. It seems like a strong assumption since
the KDS, host, and agent could also be compromised. But
the scope is limited since it only affects the security between
itself and other entities. In the case that the destination host
is legacy, the last entity is the destination border router. We
also assume the last entity is honest. It is reasonable since
the destination router has little benefit to being faulty. For
example, a faulty destination router receives 500 packets,
but it only replies to the source with the counter information
of 200. The source then localize the link between the penult
on-path router and the destination as faulty and select
another penult on-path router. But in PAN, the destination
router could negotiate the forwarding path in the control
plane, it is not necessary for the destination to reply with
the wrong information.

In the case that the destination router and host are legacy,
e.g., R4 and D in Fig. 1 do not support the localization,
R3 is the last entity. The last entity does not need to be
honest. At first glance, there is no reply from destination
AS, R3 might drop the packets and reply with the correct
counter information if it knows that it is the last entity on the
path. But it does not hurt the localization for the following
reasons: Firstly, R3 does not know whether the destination
is legacy or upgraded. Secondly, considering that R3 could
evade the localization, the source could get the end-to-end
performance from the upper layer as a reference (e.g., the
performance of TCP), to defend against the attack from the
last entity.

An adversary in the Dolev-Yao model can compromise
any on-path routers. The compromised routers can corrupt
the packet by dropping, delaying, modifying, or fabricating
it, or launch a path inconsistency attack by redirecting the
packets to an unexpected AS. They can also launch a coward

attack if they know they cannot be accurately localized,
or frame other ASes. Furthermore, several colluders could
exchange information (e.g., secret keys or link information)
and launch the above-mentioned attacks. We summarize
various types of attacks as follows:
Packet corruption. An adversary might corrupt any part of
the packet, e.g., the source address in the packet header, or
delay, drop a packet, inject a fabricated packet toward the
destination.
Path inconsistency. An adversary might forward the packet
along the arbitrary alternative path not the same as the
expected path selected by the source.
Coward attack. An adversary might launch the coward
attack [32], e.g., only drop the packets it sampled since that
other routers on the path did not sample them.
Framing attack. The adversary might incriminate other
routers by packet corruption (e.g., change other router’s
mark) or path inconsistency (e.g., redirect the packet).
Colluding attack. Colluders might exchange the dynamic
key or statistical information to avoid or violate the local-
ization [27], e.g., framing other ASes.
Replay attack. The adversary might launch a replay attack
[33], which waste the network resources or brings more
serious problems at the upper layer.
New DoS attack. The adversary might aggressively send
packets to put a computational strain or storage overhead
to overwhelm the router or host [27].

2.3 Requirements and assumptions

The requirements for an Internet-scale deployment of fault
localization are as follows:
Strong security and lightweight processing. An adversary
could not violate or evade the localization by observing
the forwarded packet. And the lightweight computation
and storage overhead in the router is necessary for the
deployment.
High fault localization accuracy. For a certain number of
epochs, we denote the localization accuracy as accuracy =
K/N , in which K is the number of epochs the source
successfully localizes the faulty link (without false positive
and false negative), N is the total number of epochs. A
localization accuracy higher than 95% is practical [27].

We assume that the source knows an AS level path to
the destination. And the KDS in each AS could derive and
distribute dynamic keys to relative entities based on the
following assumptions:
Secure dynamic key deriving system. Two KDSes in AS S
and AS I share the AS fixed key (AKSI) confidentially. Each
pair of KDS exchange the AKSI with asymmetric cryptog-
raphy in the control plane (e.g., with DH key exchange [16]).
The KDS could derive the router’s dynamic key (RDK) and
the host’s dynamic key (HDK) with a MAC operation (e.g.,
AES) based on the AKSI in the control plane.
Secure dynamic key distribution. The host and router have
a secure channel to get the dynamic keys from KDS in the
local AS [34] [35]. Each router presets the dynamic keys from
the control plane, thus decreasing the computation overhead
to derive the dynamic key on the fly. The agent could also
securely distribute the symmetric key between itself and the
source host.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3392486

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 14,2025 at 07:11:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

Data Plane

Control Plane

VerificationInitialization

reply sample/
probe

Cryp.
mark

Counter

② ACK③ probe

Epoch
End

ACK is not
correct

① DAT

RoutersSource Destination

Data Plane

Control Plane

② reply sample

Cryptographic

marks

Counter

ACK
Epoch

End

Localization

① DAT

RoutersSource Upgraded

Destination

Agent

② Localization

Verification

and

Updating

marks

Initialization Verification

Fig. 2. Processing at different entities.

3 OVERVIEW
As shown in Fig. 2, the most important characteristic of D3
is it hardly affects the data plane forwarding. At a high level,
D3 utilizes the source to program each on-path router. With
the cryptographic marks in each packet (section 4.1), D3
achieves fault localization with 2 procedures: ① Data (DAT)
forwarding, and ② Localization based on reply.

① Data forwarding. The data forwarding includes packet
initialization at the source and the agent (section 4.2), as
well as lightweight processing at the router (section 4.3).
During packet initialization, the source embeds instructions
in the marks and transmits a specific number of DATs
to the destination in each epoch. The agent verifies the
marks and updates the marks in the packet header. In
terms of lightweight processing, each stateless router only
processes the Cryptographic marks in the data plane. If
the Cryptographic marks instruct the router to sample
the packet, it records the Counter as proof in the control
plane. The D3-supported destination verifies each packet
to filter the malicious traffic and records the end-to-end
Counter information of the session (section 4.5). Notably,
the upgraded (D3-supported) destination may transmit an
ACK containing the end-to-end Counter information back
to the source, enabling the source to achieve more robust
localization.

② Localization based on reply. At each end of an epoch,
each on-path router replies to the source with a reply
containing Counter information. Subsequently, the source
accomplishes fault localization (section 4.4). It localizes the
faulty link based on replies. As shown in Fig. 1 (c), each
on-path router has 1 reply towards the source.

We utilize the additional packet header of D3 as part of
the routing header in the IPv6 packet [36]. Fig. 3 shows our
designed D3 packet header in IPv6 packet. We utilize the
two bits of flag to indicate the length of markr for each
on-path router, epoch and seq are the epoch number and
sequence number of a specific packet respectively, indicator
is the tag to instruct each router to select the relative RDK ,
includes the time slot (16-bit ts) and the user (agent) identi-
fier (16-bit uid). Furthermore, the packet header contains 3
marks:

• marksrc (32-bit): The mark calculated by the source,
then updated by the agent after verification, which
instructs a selected on-path router to sample the packet.

• markr (32-bit): The mark calculated by the agent which
instructs the on-path routers to verify and filter the
packet.

• markpkt (32-bit): The mark calculated by the source
and verified by the destination.

PATH

epoch (8-bit)

indicator (32-bit)

markpkt (32-bit)

marksrc (32-bit)

seq (16-bit)

IPv6 Header

flag (8-bit)

markr (32-bit)

D3

Header

Fig. 3. D3 packet header in IPv6 packet.

4 PROTOCOL DESIGN
We first detail how to calculate the cryptographic marks for
each packet, then we analyze the packet initialization at the
source, the lightweight processing at each router, and the
fault localization at the source based on the reply.

4.1 Cryptographic marks in each packet
The marks are calculated by a specific MAC operation with
RDKsi and HDKsd, to guarantee that an adversary could
guess the correct marks with negligible probability. The
KDS initially generates the dynamic key between the source
and router i using the fixed key (AKSI) shared between the
source’s AS and router i′s AS:

RDKsi = MACAKSI
(ids||idi||indicator) (1)

In which MAC(.) represents the MAC computation
(e.g., AES). ids and idi are the identifiers of router s (the
border router of source AS) and router i. In practice, all
the border routers of an AS could utilize the same id (e.g.,
a virtual id) if there’s more than one border router in an
AS. The indicator is an identifier to distinguish the time
slot (ts) and the user (uid), "||" represents the concatenation
operation.

We could adjust the key switching frequency with ts. A
16-bit length ts could divide 24 hours into 2-second granu-
larity. In practice, an AS could customize the key switching
time by utilizing different steps of ts. For example, an AS
switches dynamic key every 2 seconds could increase the ts
with the step of 1. Another AS needs to switch the dynamic
key every 200 seconds with the step of 100.

Therefore, we could nest the ts in the packet header to
instruct the dynamic key switching. The KDS sends the AK
to the routers, each router could derive the key of two time
slots (tsi−1 and tsi) in the control plane, and gets the relative
key with the different ts in the packet header. After one time
slot, it clears the key of tsi−1 and derives the key of tsi+1.
Therefore, the synchronization with the granularity of the
second in the control plane is enough for D3.

The length of uid (K) would exponentially increase the
storage overhead with 2K . That means each router only
stores the dynamic keys for a certain number of uid. There
comes a challenge that some hosts in an AS utilize the same
dynamic key in a specific time slot, allows an adversary
to get the dynamic key towards a specific router i, then
subverts the secure localization. We utilize a hierarchical
mechanism to overcome it.

In our hierarchical mechanism, the agent is an edge
router of one group (with the exact security requirement)

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3392486

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 14,2025 at 07:11:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

which has a specific uid, e.g., the edge router of a subnet.
The KDS could only distribute the dynamic key toward
the agent instead of the host. With an intra-domain secure
channel, the host sends the D3 packet to the agent. The agent
processes the packet header with the dynamic keys between
itself and the on-path routers.

With this design, an AS could customize its dynamic
key policy with other ASes, including the length of uid and
the switch step of ts. Each on-path router then presets the
dynamic keys in the control plane.

The agent and the router could get the fixed key from
the KDS and derive the symmetric key in the control plane.
Each agent has 1 symmetric key SKu with each source host
which needs to achieve fault localization. The SKu between
the source and the agent could also switch with the ts in the
packet header. For example, SKu = MACSK(IPs||ts), in
which SK is the fixed key, and IPs is the IP address of the
source.

With SKu and RDKsi, the source and the agent instruct
each router to probabilistically sample a packet with marks.
The agent calculates one MAC operation to get a mark for
an on-path router. The input of the MAC includes the link
information (idi−1) and CSTPH . CSTPH is the constant
packet header of D3, which includes the source IP address,
the path information, the flag, epoch, seq, and indicator.
It could also include a partial packet payload for packet
integrity checking. Router i and agent calculate marki with
Equation (2).

marki = MACRDKsi(idi−1||CSTPH) (2)

The KDS calculates the dynamic key (HDKsd) between
the source and destination:

HDKsd = MACAKSD
(IP ||path||TS) (3)

In which AKSD is the AK between the source AS and
destination AS, IP ||path||TS represents a session, IP is
the concatenation of the source and the destination’s IP
addresses, path is the concatenation of all the routers’ id
on the path, TS is the information of the first time slot in a
session. With the HDKsd, the source calculates the markpkt
as Equation (4), where PL denotes the initial four bytes
of the packet payload and inspkt represents an instruction
guiding the packet type, which will be elaborated on in Sec.
4.2. The [0 : 32] represents truncating the rightmost 32-bit,
ensuring that the destination can authenticate the source
and verify the packet’s integrity.

markpkt =MACHDKsd
(CSTPH ||PL)[0 : 32]

+ inspkt
(4)

4.2 Packet initialization at source and agent

As shown in Algorithm 1, the source first gets the path
and SKu, HDKsd, determines the number of packets in
an epoch, e.g., N = 4000, and initializes a counter for each
on-path router with Countersrc[I] = {0}. At the beginning
of each epoch, the source initializes the epoch, seq (line
1-2). With seq from 0 to N − 1, it nests the CSTPH in
the packet header (line 3-4). Then calculates the marks
(markpkt,marksrca , markra), and nests them in the packet
header (line 5). It increases the Countersrc[i] if it instructs

Algorithm 1: packet initialization at source

input : path, SKu, HDKsd, N,Countersrc[I] =
{0}

1 for each epoch do
2 seq = 0
3 while seq < N do
4 nest CSTPH in the packet header
5 calculate and nest marks
6 if router i sample the packet then
7 Countersrc[i] + +

8 forward packet and seq = seq + 1

9 epoch = (epoch+1)%256

the on-path router i to sample the packet (line 6-7). Then it
forwards the packet to the first router and increases the seq
(line 8). At the end of each epoch, the source processes the
packet in the next epoch if it needs to send another packet
(line 9).

If the source selects router i to sample the packet, assum-
ing that marksa = MACSKu(CSTPH), it nests the marksrc
and markr in the packet header as:

marksrca =marksa[0 : 32] + inssa

markra =marksa[32 : 64]
(5)

The inssa is an instruction that indicates the sampling
policy. Particularly, inssa == n represents a DAT that does
not need to be sampled (DATUNS), inssa == 0, 1, 2. . . n−1
represents a DAT that needs hop i to sample (DATSAM).6

We name this mechanism the blind policy since only the
source, agent and the selected router know the sampling
policy. An adversary could not distinguish the packet type
from the confidential mark, thus only corrupting these
packets with negligible probability. We utilize markra to
extend the mark to 64 bits.

The source nests the inspkt in markpkt to indicate the
sampling policy as Equation (4). Particularly, inspkt ==
0, 1, 2 · · ·n − 1 represents a DAT that needs hop i to
record the sampling counter (Counter[i]) at the destination,
inspkt == n represents a DATUNS , and inspkt == n + 1
represents an ACK or a reply. It is worth mentioning that
the markpkt is unnecessary when communicate with legacy
destination, and the source nests markpkt with a random
string.

Algorithm 2: processing at agent
input : pkt, SKu, RDKpath

1 calculate inssa = marksrca -mark′srca and markra
2 if inssa <= n and markra ==mark′ra then
3 calculate marksrci ,markri with RDKsi

4 marksrc ← marksrci , markr ← markri
5 else
6 drop the packet

The agent has the SKu and RDKpath (RDKsi of
all the on-path routers). After receiving a D3 packet

6. We record the counter of sampling packets as proof .

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3392486

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 14,2025 at 07:11:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

from the source in the same subnet, it first calcu-
lates the mark′srca = MACSKu

(CSTPH)[0 : 32] and
mark′ra = MACSKu

(CSTPH)[32 : 64], and calculates
inssa with marksrca -mark′srca (line 1). If inssa <= n
and markra ==mark′ra , the agent calculates the marki as
Equation (2), and the marksrci with Equation (6). It is
worth mentioning that the agent randomly selects hop i if
inssa == n.

marksrci = marki[0 : 32] + ins (6)

In which ins is an instruction to instruct each on-path
router to sample the packet. Particularly, ins == 0 (SAM)
indicates that hop i needs to sample the packet and verify
the packet (DATSAM), ins == 1 (UNS) indicates that hop
i only needs to verify the packet (DATUNS).

The markri is calculated with Equation (7). The agent
updates the two marks as marksrc and markr in the
packet header (line 2-4). If the packet is illegitimate, the
agent drops the packet (line 5-6).

markri = marki[32 : 64] (7)

The agent could utilize markr to facilitate each on-path
router to filter the malicious traffic. We could utilize the
rightmost 2 bits of flag to indicate the length of markri
for each hop. The flag of "0,1,2,3" indicates the "2,4,8,32"
bits of markri respectively. As the average path length at
AS level is less than 5, and the majority path length level
is less than 10,7 4 bits markri could satisfy that each hop
on the path could filter the malicious packet. In this case,
markr = mark1[32 : 36]|| · · · ||markn[32 : 36]. The down-
side is that the agent needs to calculate n MAC operations
for n hops. Therefore, we utilize 32 bits markri as default,
to keep lightweight processing at the agent.

With this design, the agent needs not process the con-
trol packets (reply and ACK), and only performs 2 MAC
operations to calculate marksrca and marki. Considering
that the agent drops the illegitimate packet after the first
MAC operation, and the inter-domain traffic in an agent is
relatively lower than the AS border routers, it incurs little
computation overhead on the agent. We will detail in Sec. 6
that the throughput of an agent is sustainable.

4.3 Lightweight processing at router

Algorithm 3: processing at on-path router
Input : pkt,RDKsi, idi, idi−1

1 calculates mark′i
2 ins = marksrc−mark′srci
3 if (ins == UNS) or (flag[0 : 2]! = 3) then
4 verify markri
5 else if ins == SAM then
6 verify markri and Counter ++
7 forward packet to next router

Each router keeps one Counter for the sampling packet
(DATSAM) in the control plane. As shown in Algorithm 3,

7. https://bgp.potaroo.net/as6447

when receiving a packet, each router first calculates marki
′

with Equation (2) (line 1). Then it derives mark′srci =
marki

′[0 : 32], and calculates the ins (line 2). It then
processes the packet with different values of ins (line 3-6).

For DATUNS or each on-path router need to verify
the packet (flag[0 : 2]! = 3), it verifies the markri with
markri

′. The markri
′ is calculated according to the flag[0 :

2], e.g., markri
′ = marki

′[32 : 64] if flag[0 : 2] == 3,
markri

′ = marki
′[32 : 36] if flag[0 : 2] == 1. We set

flag[0 : 2] = 3 as default. For DATSAM , it verifies the
markri with markri

′ and clones the packet header (the
IP, PATH, and D3 packet header) to the control plane. The
control plane increases the Counter in the relative epoch.
Meanwhile, it forwards the packet to the next router (line 7).

At each end of an epoch (e.g., after receiving 200 packets
of the new epoch), the control plane sends a reply with
the information of the Counter to the source. As reply
is a control packet, the on-path router only specifies the
path information in the packet header. It does not embed
the marksrc and markr for other on-path routers. In
practice, router i utilizes the marksrc and markr to load
the Counter information, and set flag[0 : 2] = 3. From
this perspective, D3 could work well in both symmetric and
asymmetric paths.

The reply from router i utilize router i’s address as the
default source IP address. But there comes a challenge that
an adversary might distinguish the reply with the source
address (the router’s address), then corrupt this reply. To
prevent this, we modify the source address’s suffix with a
random string. Router i utilizes a specific virtual IP address
for a session. The adversary could not distinguish it from
the DAT with the source address. The router then utilizes
the new virtual source address to derive the dynamic key
(HDKis between router i and the source) with Equation (3),
and utilizes the HDKis to calculate markpkt with Equation
(4), and ins = n+ 1 indicates its a reply.

To prevent the adversary observe the Counter informa-
tion, router i nests the Counter information in the markr :

markr = ENCHDKis
(Counter) (8)

In which ENC indicates the encryption with the
HDKis. In practice, router i could utilize markr =
MACHDKis(CSTPH ||PL)[32 : 64] ⊕ Counter, in which
PL is a random string. This design allows router i and the
source to perform only one MAC operation with Equation
(4). After receiving the reply, the source first requires the
HDKis from the KDS. It can then store the HDKis locally
for any subsequent reply from router i.

4.4 Fault localization at source
With the reply from each on-path router, the source could
localize the faulty link even if the destination is legacy.

At each end of an epoch, it decrypts the Counter infor-
mation if it receives a reply, and calculates the reputation
of each on-path router. It calculates the reputation with
repui = Counter/Countersrc[i]. The reputation gap is
calculated as Equation (9). The gap between two neighbor
routers larger than the gap caused by natural packet loss
(e.g., 1%) possibly signals the faulty link.

gap = repui − repui+1 (9)

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3392486

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 14,2025 at 07:11:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

The setting of the threshold of gap is based on the
source’s requirement, e.g., an application requires an end-to-
end corruption ratio of no more than 5%. In D3, the accurate
localization is that the source localizes the specific faulty link
without false positive and false negative. For example, if R2

in Fig. 1 corrupts packets with the ratio of ρ = 5%, the
reputation gap between R2 and R3 is within ρ ± ρ/2 (e.g.,
5%± 2.5%), and others are less than ρ/2. The false positive
means that other links (e.g., between R3 and R4) have a
gap of more than ρ/2. In contrast, the false negative means
that the gap between R2 and R3 is less than ρ/2. We will
evaluate it in section 6.

4.5 Fault localization with D3-supported destination
As we described in Sec. 1, the legacy destination of D3 needs
to do nothing about the localization. But the D3-supported
destination could benefit the source to get a comprehensive
end-to-end forwarding performance. From this perspective,
we design the processing at the D3-supported destination.

Algorithm 4: processing at D3-supported desti-
nation

Input : pkt,HDKsd

1 initialize sCounter = 0, Counter[I] = {0}
2 calculate inspkt = markpkt -mark′pkt
3 if (inspkt <= n) then
4 sCounter ++
5 if (inspkt < n) then
6 Counter[inspkt] + +

7 else if (inspkt == n+ 1) then
8 process the packet as ACK or reply

9 else
10 filter the packet

11 if the end of an epoch then
12 forward ACK toward the source

The destination processes the packet with Algorithm 4.
It first initializes the counters (Counter[I] for each hop and
sCounter for this session) with 0 (line 1).

When the destination receives a packet, it calculates
mark′pkt with mark′pkt = MACHDKsd

(CSTPH ||PL)[0 :
32], then calculates the inspkt (line 2). The inspkt indicates
that this packet is legitimate (inspkt <= n) or sampled
(inspkt < n), the destination performs the sCounter++ and
Counter[ins] + + respectively (line 3-6); inspkt == n + 1
represents that its an ACK or a reply, and this "destination"
is a "source" of a specific session (line 7-8). If the markpkt
header is wrong, it filters the packet (line 9-10).

At each end of an epoch, the destination forwards the
counter information to the source with an ACK (line 11-12).
An ACK has the same packet header as the reply except
that the destination sends all the Counter[i] of an epoch to
facilitate the source to get a comprehensive corruption ratio.
As detailed in the processing of the reply, it utilized the
markr to load the sCounter information.

The destination calculates the end-to-end corruption ra-
tio based on the sCounter information:

repu = sCounter/N (10)

In which N is the number of packets in an epoch
(e.g., 4000). We denote the end-to-end corruption ratio as
corre = 1− repu. For a path length of k, the natural packet
loss ratio in a router is ρn, and the theoretical corruption
ratio incurred by the natural packet loss is θn = 1−(1−ρn)k.
As the sCounter records all the packets received by the des-
tination, we denote the end-to-end corruption ratio thresh-
old as:

θthreshold = ρ+ θn (11)

If the end-to-end corruption ratio is less than a threshold
(e.g., ρ + θn = 5% + 0.5% = 5.5% for ρ = 5%, ρn = 0.1%,
and k = 5), it only sends the sCounter to the source. If the
end-to-end corruption ratio is more than the threshold, it
nests the Counter[i] in the packet payload as:

ACKinfo = ENCHDKsd
(Counter[i]) (12)

The source gets the end-to-end corruption ratio corre
with the sCounter. If the corruption ratio is no more than
the threshold θthreshold (e.g., 5.5%), it needs not to localize
the faulty link. Or else, the source calculates the repu′

i of
each on-path router as:

repu′
i = Counter[i]/Countersrc[i] (13)

In which Countersrc[i] is the counter in the source. The
repu′

i is not an indicator of the actual reputation of each hop
since the downstream routers might corrupt the packets. For
example, R2 in Fig. 1 forwards 100% of the packets, R4

drops 5% of the packets, the repu′
i is less than 100% for R2

since the destination could not record the packets dropped
by R4. In Sec. 5.1, we will detail that repu′

i is an indicator to
defend against the coward attack.

4.6 Parameters in D3

D3 utilizes the blind policy to achieve fault localization.
The probabilistic sampling policy could facilitate each hop
to offload the storage overhead from the data plane to the
control plane. The parameters, which include the number
of packets in each epoch (N) and the sampling ratio (spi),
could influence the localization accuracy. In general, the
larger N and the higher spi, the higher localization accuracy.
But the larger N indicates more localization delay, while the
higher spi indicates the higher bandwidth between the data
plane and control plane. From this perspective, a reasonable
parameter of N and spi is important for D3.

Consider that the corrupted packets are randomly dis-
tributed in each epoch. We perform uniform sampling ac-
cording to different spi (e.g., the source instructs each hop
to randomly sample 15% of the packets if spi = 15%). To set
reasonable sampling parameters, we evaluate the sampling
consistency under different corruption ratios (ρ) with a
Python program. The source samples packets according to
a certain spi, and each hop corrupts packets according to
a certain corruption ratio. For each hop, the total packets
set is T , the sampling packets set is S, the actual corrupted
packets set is D, and the sampling corrupted packets set
is the intersection of S and D (S ∩ D). For each hop, the
sampling corruption ratio is SCR = (S ∩ D)/S, and the
actual corruption ratio is ACR = D/T . We define sampling

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3392486

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 14,2025 at 07:11:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

TABLE 2
The sampling consistency in different parameters

N ρ = 10% 5% 3% ρ = 10% 5% 3%

spi= 5% spi= 10%

1000 491 321 277 652 500 413
2000 648 485 390 821 651 537
3000 754 585 476 896 737 630
4000 816 654 556 944 819 714
8000 944 824 700 993 930 862

spi= 15% spi= 20%

1000 753 551 442 800 636 543
2000 886 724 594 932 827 696
3000 957 825 711 978 886 797
4000 978 898 791 993 941 864
8000 999 980 924 1000 993 966

consistency as the difference between the two corruption
ratios is less than 30% (|SCR−ACR|

ACR < 30%). In this case,
the sampling corruption ratio could represent the actual
corruption ratio. For example, if the actual corruption ratio
is 5%, the sampling corruption ratio of 3.5% − 6.5% meets
the requirement of sampling consistency.

We evaluate the sampling consistency under different
parameters (N , spi, and ρ). We test each case with 1000
epochs and record the number of epochs it meets the re-
quirement of sampling consistency. As shown in TABLE 2,
when N = 1000 in each epoch, only about 63.6% of epoch
meet the consistency requirement even if spi = 20% and
ρ = 5%. When N = 3000, with spi = 15% and ρ = 5%,
the ratio of sampling consistency can reach 82.5%. When
N = 4000, the ratio of sampling consistency can reach
89.8% with spi = 15% and ρ = 5%. Therefore, we utilize
N = 4000 and spi = 15% as default. With the larger N ,
the spi can be reduced linearly. For example, the parameters
of N = 8000 and spi = 5% could achieve almost the same
sampling consistency as N = 4000 and spi = 10%.

It is worth mentioning that the source localizes the faulty
link according to the gap of adjacent hops, and the local-
ization accuracy is affected by the sampling consistency of
adjacent hops. Sec. 6 will evaluate the localization accuracy
with different N , spi, and ρ in each epoch.

5 ANALYSIS
We analyze the security and performance properties in this
section. As D3 in edge cloud is the same as D3 except that
D3 needs much less storage overhead in terms of dynamic
key, we compare D3 with Faultprints and RFL. The analysis
shows that D3 achieves strong security properties with
relatively low overhead.

5.1 Security analysis

As shown in TABLE 3, we analyze D3 against 6 prevalent
attacks. In general, D3 could localize the faulty link that
launches the packet corruption (drops, delays, modifies,
or fabricates the packet) and path inconsistency (redirects
the packet) attack. It is resilient to coward attacks, framing
attacks, colluding attacks, and replay attacks. Finally, we

explain why D3 does not create the opportunity for a new
DoS attack.
Packet corruption and path inconsistency. If the adversary
modifies the packet header, and the adversary delays or
drops the packets, the Counters in the downstream routers
will decrease. If the adversary launches the path inconsis-
tency attack, the Counter in the downstream router will
decrease since the mark is calculated with the link informa-
tion. The source localizes the link with the reputation gap
more than the threshold as a faulty link. Faultprints and
RFL have the same security property.
Coward attack. Faultprints and RFL could defend against
it since an on-path router does not know whether other
on-path routers should sample the packet. For the D3-
supported destination, D3 could defend against coward
attack with the Counter information from the destination.
As the adversary only drops the packets sampled by it-
self, the source could localize it with the Counter[i] from
the destination. For example, R2 in Fig. 1 drops 5% of
the packets sampled by R2, R3 and R4 reply the correct
Counter to the source since they do not need to sample the
dropped packets, then repu2 = repu3 = repu4 = 100%.
The Counter[i] from the destination will indicate the packet
dropping, then repu′

2 = 95%, repu′
3 = repu′

4 = 100%. The
source could eventually localize R2.

For the legacy destination, the source could not get
Counter[i] from the destination. It could utilize markr as
another sampling instruction to instruct the sampling policy.
That means, each on-path router needs to compare with
markr and marksrc, then decide whether sample a packet.
Each on-path router could not launch the coward attack
since it does not know whether the downstream on-path
router will sample this packet. But it incurs the computation
overhead of the agent, and two colluders still could launch
the coward attacks.

Based on the source-driven localization, an alternative
is the source clears the noise from other on-paths routers
by an exclusive sampling policy. That means, only one
on-path router to sample the packets in a specific epoch.
The source gets the end-to-end performance from the upper
layer as a reference (e.g., the performance of TCP). When
the end-to-end performance is significantly lower than the
repui of the last on-path router, it instructs one on-path
router to exclusively sample packets in an epoch. Assuming
an epoch has N packets, the source instructs the first on-
path router sample N × sp1 packets in epoch m, the second
on-path router sample N × sp2 packets in epoch m + 1 (or
another epoch). The rest on-path routers can sample N×spi
packets in the same way. As each on-path router only drops
the packets it sampled, the source could localize the fault
entity with the end-to-end performance and the repui in
a specific epoch. For example, if R2 launches the coward
attack, it only drops the packets at epoch m + 1, the end-
to-end performance in epoch m + 1 would be significantly
lower than other epochs since the coward attacker (R2) does
not drop packets in other epochs.
Framing attack. To frame others with path inconsistency, R1

in Fig. 1 changes the path information from R3 to Rj , which
is not the source anticipated. But as the path information is
the partial input of the markr , R2 could not calculate the
correct marki. The Counter information from R2 will turn

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3392486

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 14,2025 at 07:11:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

TABLE 3
Comparison of security with existing mechanisms

Packet corruption Path inconsistency Coward attack Framing attack Colluding attack Replay attack

Faultprints ✓ ✓ ✓ (✓) ✓ (✓)
RFL ✓ ✓ ✓ (✓) ✓ ✗
D3 ✓ ✓ ✓ ✓ ✓ ✓

out to be wrong. The source would localize the link between
R1 and R2 as a fault. Faultprints and RFL could also defend
against this attack with the chained marks.

To frame others with packet corruption, assume that R1

in Fig. 1 wants to modify the marksrc of R4. But with the
blind policy, R1 could not know the marki of R4 since it
does not have the dynamic key between the agent and R4,
the Counter from R2 will turn to be lower, the source then
gives R1 and R2 a low reputation. In Faultprints, the sam-
pling policy is based on the chained marks (Authmodif,i).
If R1 changes the mark for R4, it only affects the routers
after R4. Then the source gives R4 a low reputation. In fact,
R1 is the adversary. While in RFL, to prevent an adversary
from changing the downstream router’s mark, each on-path
router verifies the packet based on the marks (Mi) of all the
downstream routers. If R1 changes the mark for R4 (or R3),
R2 will drop the packet after the failure of verification. It
could defend against the framing attack if each entity strictly
enforces the verification. But in RFL, the sampling policy is
determined by PacketID, not by the Mi. R2 might not drop
the packet considering the AS relationship on the Internet.
The adversary could achieve the attack if R3 or R4 drops
the packet.
Colluding attack. There are two situations of colluding at-
tacks in violating the localization of D3: (1) non-adjacent col-
luders, e.g., two colluders Ri and Rj on the path, j > i+ 1,
(2) adjacent colluders, e.g., two colluders Ri and Ri+1. For
the case of non-adjacent colluders, as the adversaries do not
know the dynamic key of a skipped honest router Ri+1, the
first adversary Ri would be localized since the source could
not get a correct Counter from Ri+1.

For the case of adjacent colluders, e.g., Ri+1 and Ri

share the dynamic key. If Ri corrupted a packet should be
sampled by Ri+1, and Ri+1 recorded the relative informa-
tion. The source could localize the link between Ri+1 and
Ri+2. Ri evades the localization since Ri+1 and Ri act like
a virtual router Rvc. But the adversaries have little benefit
since the source could first circumvent Ri+1, then localize
Ri in the new epoch. Faultprints and RFL have the same
characteristic as D3.
Replay attack. Assuming that an adversary launches a
replay attack. Each router in D3 could mitigate this attack
by recording and replying with the Counter. It could de-
fend against the replay attack in coarse granularity. The
D3-supported destination could observe the misbehavior
with seq in fine granularity. It could filter this packet and
announce it in the ACK with another Counter. Compared
with Faultprints which utilizes the timestamp in the packet
header to defend against the replay attack, D3 is more
practical since the secure time synchronization in the data
plane is impractical with today’s implementation. RFL does

not use sequence numbers or timestamps to defend against
replay attacks.
New DoS attack. The adversary could aggressively send
packets to exhaust the computation and storage resources
of each router or destination. It would not hurt D3 since
we minimize the computation overhead and have constant
storage overhead in the data plane. The adversary could
also aggressively send DATSAM to overwhelm the channel
between the data plane and the control plane. But the router
only clones the packet header to the control plane after the
verification of marksrc. The adversary had little chance to
fabricate the correct mark since it did not know the dynamic
key. The D3-supported destination only stores the Counter
information for a small number of sources, and it could
directly filter the fabricate packet with the markpkt, the
adversary has little chance to overwhelm its storage space.

The source in D3 in edge cloud needs to achieve local-
ization with the probe and reply packets. If an adversary
launch DoS attacks by frequently probing and receiving
replies from on-path routers, it would incur a potential
increase in network communication overhead. Besides that,
as the reply packet was processed in the control plane,
it would incur extremely high computation overhead in
each on-path router, and generate too much network traffic
between its control plane and data plane. In extreme cases,
it might overwhelm an on-path router. Therefore, D3 cancels
the probe packet from the source. Each on-path router in D3
only sends one reply packet toward the source at each end
of an epoch. From this perspective, the adversary could not
overwhelm the on-path router in D3. Therefore, the control
(reply) packets have negligible impact on network traffic.

5.2 Performance analysis

As shown in TABLE 4, compared with the state-of-the-art
mechanisms, D3 has a significantly lower overhead in terms
of storage, computation, and communication overhead.
Storage overhead. In Faultprints and RFL, each router de-
rives the dynamic key on the fly to keep 1 key (16B) storage
overhead. They record the sampling packet with the Bloom
Filter, which is a relatively sustainable way (468 MB for a
bandwidth of 100Gbps) to store the proof in the data plane.
D3 presets dynamic keys to keep a constant and low key
storage overhead. The total number of ASes on the Internet
is less than 80,000.8 In the extreme case, a router needs to
preset the dynamic keys for all the other ASes. With the
key length of 24 B and each router presets the key for 2
time slots, each AS has N agents, the storage overhead is
80× 103 × 2× 24×N B, which is around 3.84×N MB.

8. https://www.cidr-report.org/as2.0/

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3392486

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 14,2025 at 07:11:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

TABLE 4
Comparison of performance with existing mechanisms

Data plane
storage overhead (B)1

Additional packet
header (B)2

Control
packet

No ASY in
data plane

No deriving key
on the fly

MAC
operation

localization
delay (pkts)

Faultprints 16 + 468× 106 ×BW 56 + 8× n 2400 ✗ ✗ 2 4000
RFL 16 + 468× 106 ×BW 38 + 4× n 2 ✗ ✗ 2 4000
D3 3.84× 106 × L 20 5 ✓ ✓ 1 4000

1 BW represents the bandwidth in metric of 100 Gbps, L represents the number of agents in an ASes.
2 n represents the path length.

D3 offloads the proof storage overhead of the router
to the control plane. The storage overhead in the control
plane is also sustainable. We record the two Counters (each
Counter with 2 B) with a hash table (the data index calcu-
lated by the hash of the session information). Two epochs are
enough since each router clears the Counter of epoch i−1 at
the end of epoch i, which takes 4 B for a session. Consider
the load factor of 0.75, and each router’s average number of
flows per second is 39.73 K.9 The total storage overhead of
D3 in the control plane is N = 39.73× 4/0.75 KB, which is
around 212 KB.
Communication overhead. The additional packet header is
the most important communication overhead. Faultprints
and RFL have 96 B and 58 B additional packet headers
with a path length of 5 respectively and will grow with
the increase of path length ((56 + 8 × n) and (38 + 4 × n)
with the path length of n). D3 has the constant additional
packet header of 20 B to embed the probabilistic and
cryptographic sampling policy, which is significantly lower
than Faultprints and RFL. Besides that, the number of probe
and reply packets also has an impact on network traffic.
Considering forward and reverse paths of 5 ASes, in Fault-
prints, the ACK from the destination can be piggybacked
on TCP acknowledgments, therefore, there is no control
packet if the packet forwarding is the same as the source
anticipated. In contrast, if the corruption ratio is larger than
the threshold, the source sends 1 probe packet and receives 5
reply packets for each data packet. Assuming that the Pprobe

is 10% for 4000 packets, the number of control packets is
6 ∗ 400 = 2400. RFL has 2 control packets (1 ReqProb
packet and 1 AckProb packet) since each on-path router
only replies one packet with the proof (encrypted Bloom
Filters) and the signature calculated with its private key,
which incurs heavy computation overhead in asymmetric
cryptography. D3 does not need ACK and probe packets,
it utilizes a source-driven localization. Then each on-path
router only sends 1 reply packet toward the source at the
end of each epoch. The number of control packets is only 5.
Computation overhead. Faultprints and RFL need to nego-
tiate the dynamic keys with asymmetric encryption, which
is prohibitively expensive in the data plane. Moreover, they
need to derive the dynamic key on the fly for each packet,
which takes 1 MAC operation with a strong security guar-
antee (e.g., AES). Besides that, Faultprints accomplishes the
processing of Authmodif,i with 1 MAC operation, verifies
Coni with 1 MAC operation if the Authmodif,i indicates
that it should store the proof in the Bloom Filter. It utilizes 1

9. https://www.caida.org/catalog/datasets/trace_stats/

MAC operation to achieve the delay localization. Therefore,
it needs at least 2 MAC operations. RFL achieves the delay
localization in each epoch, it needs to calculate per-packet
Mi with 1 MAC operation, and calculate the sampling pol-
icy with 1 MAC operation, thus having 2 MAC operations.
D3 presets the dynamic key in the control plane, each router
only performs 1 lightweight MAC operation, significantly
decreasing the computation overhead in the data plane.
localization delay. We denote the localization delay as the
number of packets in an epoch. The RTT on the Internet
peaks at 100 ms and 200 ms.10 For a packet size of 1500 B,
4000 packets in an epoch make up 48 Mb. The forwarding
delay is nearly 500 ms with an end-to-end bandwidth
of 100 Mbps. One epoch is enough to receive the ACK
and reply, and the evaluation in Sec. 6 testifies that the
localization accuracy could achieve 95% with 4000 packets
in an epoch. Therefore, D3 utilizes 4000 packets in an epoch
as default. In Faultprints [27], the evaluation results show
that the probabilistic model can achieve a high localization
accuracy, i.e., the localization accuracy is more than 0.95
with a PProbe of 0.15 and 4000 data packets. RFL utilizes the
same storage mechanism except that each on-path router
only replies one packet with the proof (encrypted bloom
filters) and the signature, thus also having around 4000
packets in each epoch.

6 EVALUATION
6.1 Implementation
We implement D3 in the BMv2 environment11 and Bare-
foot Tofino hardware. Our BMv2 testbed hosts in a virtual
machine with Ubuntu 16.04, Intel Core i5-8250U CPU, 2.4
GHz, and 4 GB RAM. We instantiate the MAC operation
with 2EM [37]. As the 2EM has been proven secure up
to 22n/3, we utilize the 24 B dynamic key to achieve
n = 64. The implementation includes the terminals (source
and destination), the agent, and the on-path routers. The
processing of agent and on-path routers includes nearly 900
lines P416 program in the data plane. We configure a router
as an agent or an on-path router from the control plane with
P4 Runtime. The agent verifies the packet and updates
the marks with the source’s policy. In contrast, the on-path
router performs the data plane operations to sample and for-
ward the packets. We implement nearly 500 lines of Python
program in the on-path router’s control plane, including
preparing the reply. We instantiate two terminals as the

10. https://www.caida.org/catalog/software/walrus/rtt/
11. https://github.com/p4lang/behavioral-model

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3392486

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 14,2025 at 07:11:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

3 5 10
0
4
8

12
R

ep
ut

at
io

n
ga

p
(%

)
(a) N = 1000

AVG. HIGH LOW

3 5 10
0
4
8

12
(b) N = 2000

3 5 10
Corruption ratio (%)

0
4
8

12

R
ep

ut
at

io
n

ga
p

(%
)

(c) N = 3000

3 5 10
Corruption ratio (%)

0
4
8

12
(d) N = 4000

Fig. 4. The range of reputation gap with different parameters.

source and the destination host, implement the processing
of different packets, and the fault localization with nearly
800 lines of Python program. In commodity Barefoot Tofino
programmable switch S9180-32X, we implement the key
switching in the control plane, and the data plane operation
of D3, which includes nearly 900 lines P416 program with
2EM operation as MAC operation. Finally, we test the packet
processing performance at the host.

6.2 Evaluation in BMv2

Reputation gap. We evaluate the reputation gap of the
faulty link with spi = 15%, the path length is 4, and
ρn = 0.001. The source sends N = 1000, 2000, 3000, 4000
packets in each epoch. An adversary’s corruption ratio is
ρ = 3%, 5%, 10%, respectively. As shown in Fig. 4 (a), the
low reputation gap is around 1.2% with 1000 packets in an
epoch and the corruption ratio of 10%. This false negative
decreases the localization accuracy. In Fig. 4 (b), (c), (d), with
more than 3000 packets in an epoch, the range of reputation
gap is as expected (most of the cases are within the range of
ρ ± ρ/2). With the corruption ratio of 5% and 4000 packets
in an epoch, the lowest and highest reputation gap are 4.3%
and 6.2%, while the expected value is within the range of
5%± 2.5%.
localization accuracy. Fig. 5 (a) shows the localization accu-
racy under different corruption ratios with the spi of 15%.
It shows that with the corruption ratio of 10%, the accuracy
is around 90%, and 95% with 2000, and 4000 packets in an
epoch, respectively. It’s around 80% when the corruption
ratio is less than 5%, and the packet number in an epoch is
1000. It indicates that the low corruption ratio and packet
number result in a reputation gap less than the threshold.
The corruption ratio has little effect on the accuracy when
the packet number is more than 4000. This testifies that
D3 can achieve fault localization even with the adversary’s
corruption ratio of 3%. Fig. 5 (b) is the localization accuracy
under different spi with a corruption ratio of 5%. It shows
that with 1000 packets in an epoch and a spi of 5%, the
accuracy is only around 65%. It is around 85% with a packet
number of 2000 and a spi of 10%. And it is more than
95% with 4000 packets and a spi of 15%. The baseline of
the state-of-the-art mechanisms (Faultprints) is to achieve a
localization accuracy of 95% for 4000 packets in an epoch
under the weaker attackers (ρ = 5%), we can conclude
that D3 achieves nearly the same localization accuracy with
much less overhead.

1000 2000 3000 4000
Packet number in an epoch

70

80

90

100

A
cc

ur
ac

y
(%

)

(a) Different corruption ratio

3%
5%
10%

1000 2000 3000 4000
Packet number in an epoch

70

80

90

100

A
cc

ur
ac

y
(%

)

(b) Different sampling ratio

5%
10%
15%
20%

Fig. 5. The localization accuracy with different parameters.

4 5 6 7 8 9 10
0

4

8

12

16

C
or

ru
pt

io
n

ra
tio

 (%
)

(a) ρn = 0.001

TH. ρa = 0 ρa = 3% ρa = 5% ρa = 10%

4 5 6 7 8 9 10
0

4

8

12

16 (b) ρn = 0.002

4 5 6 7 8 9 10
Path length (n)

0

4

8

12

16

C
or

ru
pt

io
n

ra
tio

 (%
)

(c) ρn = 0.003

4 5 6 7 8 9 10
Path length (n)

0

4

8

12

16 (d) ρn = 0.005

Fig. 6. The end-to-end corruption ratio with different parameters.

Extra control packet overhead. The adversary can only cor-
rupt the control packets (reply) with the same ratio as DAT .
Each router could forward more than 1 reply to facilitate the
source receiving at least 1 reply from each on-path router.
We evaluate the number of replies in different corruption
ratios. The results show that under the corruption ratio of
3%, the source receives more than 98% of the replies if each
router forward one reply; under the corruption ratio of 5%,
two reply from each router could satisfy that the source
receives 95% of the replies; under the corruption ratio of
10%, two replies could meet that the source receives 90%
of the replies. Considering each epoch has 4000 packets,
and the control packet size is less than 100 B, assuming that
the average size of DAT is 1000 B, each router forwards
2 replies at each end of an epoch, the extra communication
overhead incurred by D3’s control packets is around 0.025%
for the path length of 5. In Faultprints, the corresponding
overhead is 1.81%.
End-to-end corruption ratio from the D3-supported desti-
nation. We evaluate the end-to-end corruption ratio with the
path length from 4 to 10. Each result represents an average
of 1000 runs. The source sends 4000 DATs in an epoch. An
adversary corrupts packets with the corruption ratio of ρ =
0, 3%, 5%, 10%. Fig. 6 shows the comparison of theoretical
(TH) and measured end-to-end corruption ratio with differ-
ent nature packet loss (ρn = 0.001, 0.002, 0.003, 0.005). The
results show that the measured corruption ratio is nearly the
same as the theoretical value since the destination records
all the packets. It testifies that the D3-supported destination
makes the localization more robust. This is especially useful
for an enterprise sending many of its flows along the same
path, e.g., between two remote offices. A transit AS that tries
to violate the communication is detected quickly. It is worth

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3392486

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 14,2025 at 07:11:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

mentioning that in the case of the communication from the
client to the server, the server could only keep stateful for
parts of the clients, to avoid the DoS attack towards the
server.

6.3 Evaluation in hardware

As the dynamic key is critical for the localization, we first
test the delay of dynamic key switching in the control
plane in switch S9180-32X. Then we implement 2EM [37] in
S9180-32X as MAC operation, and testify that the hardware
could accomplish the processing of D3 within one pipeline.
Besides that, as D3 sends parts of the packet headers from
the data plane to the control plane to store the proof , it
incurs a certain latency cost. We first test the latency from
the data plane to the control plane, which takes 3 ms for
one packet. It takes around 1 µs to store the Counter in
the control plane. As each epoch is about a few hundred
milliseconds, this latency is acceptable for epoch-based fault
localization. In practice, as we only transmit the relevant
packet header to the control plane, we could utilize 1 port
of the switch to connect with a more powerful server, or
even with a stateful per-flow packet processor system [19].
Key switching. In the beginning, each router needs to preset
the dynamic keys of the first two time slots and ensure that
there are dynamic keys of tsi and tsi+1 at each time slot.
After the end of tsi, the hardware updates the key of tsi
with the key of tsi+2. Therefore, we test the delay of key
switching (presetting and clearing) in the control plane. As
shown in TABLE 5, when the number of keys is 104, the
key switching can be completed within 1 second, that is, the
router clears the key of tsi, and presets the key of tsi+2 in
the control plane, while takes about 10 seconds for 105 keys.
When the granularity of the time slot is minute, each router
could keep synchronization at the minute level and preset
the dynamic keys of two time slots to ensure the key sharing
between the agent and the router, which is sustainable in the
hardware.

TABLE 5
Key distribution and clearing delay

Presetting(ms) Clearing(ms)
1 102 104 105 1 102 104 105

0.28 12.09 808.35 10454.78 0.15 0.81 39.375 327.37

Computation overhead. The MAC operation in different
mechanisms behaves the same on specific hardware. From
this perspective, we evaluate the computation overhead in
terms of the computation delay of relative MAC operation.
In D3, each router performs 1 MAC operation. In contrast,
Faultprints and RFL derive the symmetric keys with the first
MAC operation and then accomplish 2 MAC operations (as
detailed in Sec. 5). As the hardware accomplishes the MAC
operation with strong security guarantee (e.g., AES) takes
relatively higher computation resources and significantly
decreasing the throughput (e.g., the throughput for an AES-
128 operation on RMT programmable switch is 10.92 Gbps)
[31]. We could cache the symmetric key in the hardware

128 256 512 768 1024 1500
Packet size (B)

0.0

0.5

1.0

1.5

C
om

pu
ta

tio
n

de
la

y
(μ
s)

0.27 0.29
0.38

0.56
0.65

0.91

0.41 0.43 0.45
0.58

0.68

0.92
1.08 1.12 1.16

1.3
1.41

1.69
IPv6 D3 Faultprints/RFL

Fig. 7. The computation delay in Barefoot Tofino hardware.

[38] (though it incurs high storage overhead), and achieve 2
MAC operations with one recirculation.

The computation delay in different packet sizes is shown
in Fig. 7, in which IPv6 represents IPv6 packet forwarding
without MAC operation, which is the baseline with the
value from 0.27 µs (128 B) to 0.91 µs (1500 B), D3 has nearly
the same computation delay when the packet size is more
than 768 B, and slightly above the baseline when the packet
size is less than 512 B. With a packet size of 128 B and
1500 B, the delay is 0.41 µs and 0.92 µs, respectively. In
contrast, Faultprints and RFL need 2 MAC operations. We
implement 2 MAC operations with one recirculation. We test
the computation delay of 2 MAC operations, which is 1.08
µs with a packet size of 128 B, and 1.69 µs with a packet size
of 1500 B.
Throughput. We instantiate the MAC operation of D3 as
a 2EM operation, which could accomplish within a single
packet-processing pipeline in the hardware. Thus, D3 can
achieve localization at line rate (e.g., up to 3.2 Tbps on
S9180-32X). In contrast, in Faultprints and RFL, each packet
had to recirculate once to accomplish the processing. The
throughput is less than the hardware’s recirculation band-
width, the default recirculation bandwidth in S9180-32X is
200 Gbps.

6.4 Performance at agent
In D3, the agent first verifies the source with the first MAC
operation and updates the marks with the second MAC
operation. The first MAC operation determines whether the
packet is legitimate, and the second MAC operation only
updates the marks. Considering that the agent is stateless,
in S9180-32X, we could achieve the two MAC operations in
the ingress pipeline and egress pipeline, thus achieving line
rate processing.

6.5 Performance at host
In D3, the host requests path information and dynamic keys
from the KDS. The additional latency is insignificant since
the paths and keys information is available at local KDS.
Moreover, a host can cache both path and key information,
eliminating extra latency for subsequent packets.

The source and destination need to perform the MAC
operations for each packet, which comprises the most com-
putation overhead. We test the MAC operations with 2EM
in the Intel Core i5-8250U CPU virtual machine. It could
achieve more than 1,200,000 2EM operations in one second.
The source needs a 2EM operation to calculate the markpkt,
and a 2EM operation to calculate the marksrca for the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3392486

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 14,2025 at 07:11:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

agent. In comparison, the D3-supported destination needs
to calculate the markpkt. We could learn that an ordinary
commodity host could support up to 600,000 packets for the
source and 1,200,000 for the destination, which is 7.2 Gbps
and 14.4 Gbps for the packet size of 1500 B. We can conclude
that the computation overhead at the host is sustainable.

We test the localization delay in the virtual machine,
which is the delay of each source to figure out the faulty
link with replies from on-path routers. With 1, 000 runs,
the average delay for the source to calculate the repui for
each on-path router is 1.10 ms. For a path length of 5, the
localization delay is around 5.50 ms. As each epoch takes
more than 100 ms, it is sustainable for each source to localize
the faulty link.

7 DISCUSSION
7.1 Incremental deployment

As the deployment of PAN is an incremental process [39],
the deployment of D3 in PAN is also an incremental process.
Fortunately, D3 could benefit the early adopter. Firstly, the
source could get benefits from D3. For example, R2 in Fig. 1
is a legacy router, the source could nest the path information
with R1 − R3 − R4 in the packet header with a specific
routing header, and achieve the localization with the replies
from R1, R3, R4. This mechanism could achieve by a specific
PAN which supports the loose source routing (e.g., SRv6).
Secondly, the ISP could benefit from D3 since it could attract
traffic from an upgraded source which need more security
guarantees. In general, for the network which has an ad-
ministrator (e.g., the enterprise network), D3 could support
the source host or a gateway to achieve fault localization as
the administrator’s expectation. While for some emerging
new scenarios (e.g., the source is an automated vehicle or a
smart wearable for cardiac monitoring), with a hierarchical
design, an agent in D3 could establish the fault localization
after a packet verification, thus empowering the source to
improve its security in the network data plane.

7.2 D3-supported destination could benefit fault local-
ization

The D3-supported destination could improve the robustness
of the localization. We described in Sec. 4 that the adversary
might launch a coward attack if the legacy destination
does not return the ACK. A countermeasure is that we
could utilize exclusive sampling policy to defend against it
(The source needs to get the end-to-end performance from
the upper layer). A D3-supported destination host could
benefit D3 to defend against the coward attack. It is worth
mentioning that the destination could only keep stateful
for the authenticated source (e.g., the hosts in the same
enterprise), to prevent the adversary from launching a DoS
attack toward the stateful destination.

8 RELATED WORK
Data plane MAC operation. There are several mechanisms
available to achieve an intelligent network data plane using
programmable hardware [40], [41]; however, accomplishing
MAC operation in the data plane remains challenging.

SPINE [42] achieves the MAC operation with SipHash in
the BMv2 environment, but the hardware could not ac-
complish it within one single pipeline [43]. P4-AES [31]
requires at least four recirculations to accomplish a MAC
operation. PINOT [37] implements the 2EM operation in
a single pipeline on commercial hardware to encrypt the
IP address. Based on PINOT, we utilize the dynamic keys,
combined with the 2EM operation to calculate two 32 bits
marks in a single pipeline, then achieve the lightweight
fault localization with the two marks.
Path availability and verification. The PAN, exemplified by
SCION [17], offers transparency and user choices, while SR
[18] provides a practical network programming approach.
These mechanisms form the foundation for constructing a
PAN that enables hosts to embed their policies in packet
headers. For path verification, EPIC [20] employs efficient
symmetric cryptographic operations during forwarding,
whereas PPV [44] and MASK [45], [46] enhance path ver-
ification efficiency through probabilistic packet marking.
These mechanisms can only verify the forwarding path, and
cannot localize the faulty link.
Fault localization. AudIt [23] and Network Confessional
[47] lack packet authentication. DynaFL [48] and DYNAPFV
[49] focus on detecting attacks against packet forwarding in
SDN. TrueNet [50] utilizes trusted computing technology
to establish a trusted network-layer architecture. ShortMAC
[26] provides strong security guarantees but comes with
significant storage overhead. These mechanisms encounter
challenges in inter-domain applications. Faultprints [27] is
the first fault localization mechanism designed for inter-
domain context, employing per-packet proof recording
with Bloom Filter. RFL [28] addresses fault localization in
the context of unreliable communication channels. Unfortu-
nately, both mechanisms still involve significant overhead.
In contrast, D3 achieves high localization accuracy with
minimal overhead in on-path routers through a source-
driven mechanism.

9 CONCLUSION
It is difficult to deploy the existing secure fault localization
mechanisms in the PAN for the heavy storage, communi-
cation, and computation overhead. This paper designs D3,
which offloads the router’s overhead to the host and control
plane. D3 has low storage overhead in the data plane and
communication overhead in the network. With the 2EM
operation, each on-path router could accomplish all the
MAC operations within a single pipeline on commodity
hardware, thus significantly lowering computation over-
head. And it has strong security guarantee characteristics
with the blind policy. Furthermore, D3 keeps backward
compatibility with the source-driven design. With D3, the
source could program the router on the path and build
a more reliable network to meet its requirements. It thus
brings us closer to localizing the malicious ASes in the PAN.

REFERENCES

[1] Y. Zhao, K. Xu, H. Wang, B. Li, M. Qiao, and H. Shi, “Mec-enabled
hierarchical emotion recognition and perturbation-aware defense
in smart cities,” IEEE Internet Things J., vol. 8, no. 23, pp. 16 933–
16 945, 2021.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3392486

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 14,2025 at 07:11:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

[2] M. Shen, J. Zhang, L. Zhu, K. Xu, and X. Tang, “Secure SVM
training over vertically-partitioned datasets using consortium
blockchain for vehicular social networks,” IEEE Trans. Veh. Tech-
nol., vol. 69, no. 6, pp. 5773–5783, 2020.

[3] X. Feng, C. Fu, Q. Li, K. Sun, and K. Xu, “Off-path TCP exploits
of the mixed IPID assignment,” in ACM SIGSAC Conference on
Computer and Communications Security, 2020, pp. 1323–1335.

[4] J. Zheng, Q. Li, G. Gu, J. Cao, D. K. Yau, and J. Wu, “Realtime ddos
defense using cots sdn switches via adaptive correlation analysis,”
IEEE Trans. Inf. Forensics Secur., vol. 13, no. 7, pp. 1838–1853, 2018.

[5] Q. Li, X. Deng, Z. Liu, Y. Yang, X. Zou, M. Xu, and J. Wu, “Dy-
namic network function enforcement via joint flow and function
scheduling,” IEEE Trans. Inf. Forensics Secur., vol. 17, pp. 486–499,
2022.

[6] J. Cao, M. Xu, Q. Li, K. Sun, and Y. Yang, “The loft attack:
Overflowing sdn flow tables at a low rate,” IEEE/ACM Trans.
Netw., vol. 31, no. 3, pp. 1416–1431, 2023.

[7] R. Xie, J. Cao, Q. Li, K. Sun, G. Gu, M. Xu, and Y. Yang, “Disrupting
the sdn control channel via shared links: Attacks and countermea-
sures,” IEEE/ACM Trans. Netw., vol. 30, no. 5, pp. 2158–2172, 2022.

[8] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu,
Q. Li, M. Xu, and J. Wu, “Poseidon: Mitigating volumetric ddos
attacks with programmable switches,” in 27th Annual Network and
Distributed System Security Symposium, San Diego, California, USA,
February 23-26, 2020, pp. 1–18.

[9] G. Li, M. Zhang, S. Wang, C. Liu, M. Xu, A. Chen, H. Hu, G. Gu,
Q. Li, and J. Wu, “Enabling performant, flexible and cost-efficient
ddos defense with programmable switches,” IEEE/ACM Trans.
Netw., vol. 29, no. 4, pp. 1509–1526, 2021.

[10] C. Fu, Q. Li, M. Shen, and K. Xu, “Realtime robust malicious traffic
detection via frequency domain analysis,” in 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event,
Republic of Korea, November 15 - 19, 2021, pp. 3431–3446.

[11] X. Feng, Q. Li, K. Sun, K. Xu, B. Liu, X. Zheng, Q. Yang, H. Duan,
and Z. Qian, “Pmtud is not panacea: Revisiting ip fragmentation
attacks against tcp,” in 29th Annual Network and Distributed System
Security Symposium, San Diego, California, USA, April 24-28, 2022.

[12] X. Feng, Q. Li, K. Sun, C. Fu, and K. Xu, “Off-path TCP hijacking
attacks via the side channel of downgraded IPID,” IEEE/ACM
Trans. Netw., vol. 30, no. 1, pp. 409–422, 2022.

[13] X. Feng, Q. Li, K. Sun, Z. Qian, G. Zhao, X. Kuang, C. Fu, and
K. Xu, “Off-path network traffic manipulation via revitalized icmp
redirect attacks,” in 31st USENIX Security Symposium, Boston, MA,
USA, August 10-12, 2022, pp. 2619–2636.

[14] C. Fu, Q. Li, M. Shen, and K. Xu, “Frequency domain feature based
robust malicious traffic detection,” IEEE/ACM Trans. Netw., vol. 31,
no. 1, pp. 452–467, 2023.

[15] C. Fu, Q. Li, and K. Xu, “Detecting unknown encrypted malicious
traffic in real time via flow interaction graph analysis,” in 30th
Annual Network and Distributed System Security Symposium, San
Diego, California, USA, February 27 - March 3, 2023, pp. 3431–3446.

[16] X. Liu, A. Li, X. Yang, and D. Wetherall, “Passport: Secure and
adoptable source authentication,” in 5th USENIX Symposium on
Networked Systems Design & Implementation, San Francisco, CA,
USA, April 16-18, 2008, 2008, pp. 365–376.

[17] A. Perrig, P. Szalachowski, R. M. Reischuk, and L. Chuat, SCION:
A Secure Internet Architecture, ser. Information Security and Cryp-
tography. Springer, 2017.

[18] C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, and
Z. Li, “Segment routing over ipv6 (srv6) network programming,”
RFC, vol. 8986, pp. 1–40, 2021.

[19] M. Scazzariello, T. Caiazzi, H. Ghasemirahni, T. Barbette, D. Kos-
tic, and M. Chiesa, “A high-speed stateful packet processing
approach for tbps programmable switches,” in 20th USENIX Sym-
posium on Networked Systems Design and Implementation, Boston,
MA, April 17-19, 2023, pp. 1237–1255.

[20] M. Legner, T. Klenze, M. Wyss, C. Sprenger, and A. Perrig, “EPIC:
every packet is checked in the data plane of a path-aware inter-
net,” in 29th USENIX Security Symposium, August 12-14, 2020, pp.
541–558.

[21] H. Birge-Lee, L. Wang, J. Rexford, and P. Mittal, “SICO: surgi-
cal interception attacks by manipulating BGP communities,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, London, UK, November 11-15, 2019, pp.
431–448.

[22] V. N. Padmanabhan and D. R. Simon, “Secure traceroute to detect
faulty or malicious routing,” Comput. Commun. Rev., vol. 33, no. 1,
pp. 77–82, 2003.

[23] K. J. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and S. Shenker,
“Loss and delay accountability for the internet,” in Proceedings of
the IEEE International Conference on Network Protocols, Beijing, China,
October 16-19, 2007, pp. 194–205.

[24] A. T. Mizrak, Y. Cheng, K. Marzullo, and S. Savage, “Fatih:
Detecting and isolating malicious routers,” in 2005 International
Conference on Dependable Systems and Networks Yokohama, Japan, 28
June - 1 July, 2005, pp. 538–547.

[25] B. Barak, S. Goldberg, and D. Xiao, “Protocols and lower bounds
for failure localization in the internet,” in Advances in Cryptology
- EUROCRYPT 2008, 27th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Istanbul, Turkey,
April 13-17, 2008, pp. 341–360.

[26] X. Zhang, Z. Zhou, H. Hsiao, T. H. Kim, A. Perrig, and P. Tague,
“Shortmac: Efficient data-plane fault localization,” in 19th Annual
Network and Distributed System Security Symposium, San Diego,
California, USA, February 5-8, 2012, pp. 1–19.

[27] C. Basescu, Y. Lin, H. Zhang, and A. Perrig, “High-speed inter-
domain fault localization,” in IEEE Symposium on Security and
Privacy, San Jose, CA, USA, May 22-26, 2016, pp. 859–877.

[28] B. Wu, K. Xu, Q. Li, B. Liu, S. Ren, F. Yang, M. Shen, and K. Ren,
“RFL: robust fault localization on unreliable communication chan-
nels,” Comput. Networks, vol. 158, pp. 158–174, 2019.

[29] S. Fu, Q. Li, X. Wang, S. Yao, X. Feng, Z. Wang, X. Du, K. Wan, and
K. Xu, “D3: lightweight secure fault localization in edge cloud,”
in 42nd IEEE International Conference on Distributed Computing
Systems, Bologna, Italy, July 10-13, 2022, pp. 515–525.

[30] S. Yao, M. Wang, Q. Qu, Z. Zhang, Y.-F. Zhang, K. Xu, and
M. Xu, “Blockchain-empowered collaborative task offloading for
cloud-edge-device computing,” IEEE Journal on Selected Areas in
Communications, vol. 40, no. 12, pp. 3485–3500, 2022.

[31] X. Chen, “Implementing AES encryption on programmable
switches via scrambled lookup tables,” in Proceedings of the 2020
ACM SIGCOMM Workshop on Secure Programmable Network Infras-
tructure, Virtual Event, USA, August 14, 2020, pp. 8–14.

[32] B. Liu, J. T. Chiang, J. J. Haas, and Y. Hu, “Coward attacks in
vehicular networks,” ACM SIGMOBILE Mob. Comput. Commun.
Rev., vol. 14, no. 3, pp. 34–36, 2010.

[33] P. F. Syverson, “A taxonomy of replay attacks,” in Seventh IEEE
Computer Security Foundations Workshop, Franconia, New Hampshire,
USA, June 14-16, 1994, pp. 187–191.

[34] J. Wu, J. Bi, M. Bagnulo, F. Baker, and C. Vogt, “Source address
validation improvement (SAVI) framework,” RFC, vol. 7039, pp.
1–14, 2013.

[35] J. Wu, G. Ren, and X. Li, “Source address validation: Architecture
and protocol design,” in Proceedings of the IEEE International Con-
ference on Network Protocols, Beijing, China, October 16-19, 2007, pp.
276–283.

[36] S. E. Deering and R. M. Hinden, “Internet protocol, version 6
(ipv6) specification,” RFC, vol. 8200, pp. 1–42, 2017.

[37] L. Wang, H. Kim, P. Mittal, and J. Rexford, “Programmable in-
network obfuscation of traffic,” CoRR, vol. abs/2006.00097, 2020.

[38] J. de Ruiter and C. Schutijser, “Next-generation internet at terabit
speed: SCION in P4,” in The 17th International Conference on emerg-
ing Networking EXperiments and Technologies, Virtual Event, Munich,
Germany, 2021, pp. 119–125.

[39] Y. Tian, Z. Wang, X. Yin, X. Shi, Y. Guo, H. Geng, and J. Yang, “Traf-
fic engineering in partially deployed segment routing over ipv6
network with deep reinforcement learning,” IEEE/ACM Trans.
Netw., vol. 28, no. 4, pp. 1573–1586, 2020.

[40] G. Zhou, Z. Liu, C. Fu, Q. Li, and K. Xu, “An efficient design of
intelligent network data plane,” in 32nd USENIX Security Sympo-
sium, Anaheim, CA, USA, August 9-11, 2023, pp. 6203–6220.

[41] J. Yan, H. Xu, Z. Liu, Q. Li, M. X. Ke Xu, and J. Wu, “Brain-on-
switch: Towards advanced intelligent network data plane via nn-
driven traffic analysis at line-speed,” in NSDI, 2024, pp. 1–16.

[42] T. Datta, N. Feamster, J. Rexford, and L. Wang, “SPINE: surveil-
lance protection in the network elements,” in 9th USENIX Work-
shop on Free and Open Communications on the Internet, Santa Clara,
CA, USA, August 13, 2019, pp. 1–7.

[43] S. Yoo and X. Chen, “Secure keyed hashing on programmable
switches,” in Proceedings of the ACM SIGCOMM 2021 Workshop on
Secure Programmable network INfrastructure, Virtual Event, USA, 27
August 2021, pp. 16–22.

[44] B. Wu, K. Xu, Q. Li, Z. Liu, Y. Hu, M. J. Reed, M. Shen, and F. Yang,
“Enabling efficient source and path verification via probabilistic
packet marking,” in 26th IEEE/ACM International Symposium on
Quality of Service, Banff, AB, Canada, June 4-6, 2018, 2018, pp. 1–10.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3392486

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 14,2025 at 07:11:02 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 16

[45] S. Fu, K. Xu, Q. Li, X. Wang, S. Yao, Y. Guo, and X. Du, “MASK:
practical source and path verification based on multi-as-key,” in
29th IEEE/ACM International Symposium on Quality of Service, Tokyo,
Japan, June 25-28, 2021, pp. 1–10.

[46] S. Fu, Q. Li, M. Zhu, X. Wang, S. Yao, Y. Guo, X. Du, and K. Xu,
“MASK: practical source and path verification based on multi-as-
key,” IEEE/ACM Trans. Netw., vol. 31, no. 4, pp. 1478–1493, 2023.

[47] K. J. Argyraki, P. Maniatis, and A. Singla, “Verifiable network-
performance measurements,” in Proceedings of the 2010 ACM Con-
ference on Emerging Networking Experiments and Technology, Philadel-
phia, PA, USA, November 30 - December 03, 2010, pp. 1–12.

[48] X. Zhang, C. Lan, and A. Perrig, “Secure and scalable fault
localization under dynamic traffic patterns,” in IEEE Symposium
on Security and Privacy, San Francisco, California, USA, 21-23 May,
2012, pp. 317–331.

[49] Q. Li, X. Zou, Q. Huang, J. Zheng, and P. P. C. Lee, “Dynamic
packet forwarding verification in SDN,” IEEE Trans. Dependable
Secur. Comput., vol. 16, no. 6, pp. 915–929, 2019.

[50] X. Zhang, Z. Zhou, G. Hasker, A. Perrig, and V. D. Gligor, “Net-
work fault localization with small TCB,” in Proceedings of the 19th
annual IEEE International Conference on Network Protocols, Vancouver,
BC, Canada, October 17-20, 2011, pp. 143–154.

Songtao Fu received the Ph.D. degree from Tsinghua University, Bei-
jing, China. His research interests include Internet architecture and
network security.

Qi Li (Senior Member, IEEE) received the Ph.D. degree from Tsinghua
University, Beijing, China. He is currently an Associate Professor with
the Institute for Network Sciences and Cyberspace, Tsinghua University.
He worked at ETH Zurich and The University of Texas at San Antonio.
His research interests include network and system security, particularly
in internet and cloud security, mobile security, and big data security. He
is an Editorial Board Member of the IEEE TDSC and ACM DTRAP.

Xiaoliang Wang received his Ph.D degree from the Department of
Computer Science and Technology, Tsinghua University, Beijing, China,
in 2017. Currently, he is a lecturer in the Information Engineering College
at Capital Normal University. His research interests include network
architecture and network security.

Su Yao received his Ph.D. degree from the National Engineering Lab-
oratory for Next Generation Internet Interconnection Devices, Beijing
Jiaotong University, Beijing, China. Currently, he serves in the Beijing
National Research Center for Information Science and Technology (BN-
Rist), Tsinghua University, as an assistant research fellow. His research
interests include future network architecture, IoT security, and artificial
intelligence for network system.

Xuewei Feng received the Ph.D. degree with Tsinghua University,
Beijing, China. His research interests include Internet architecture and
network security.

Ziqiang Wang received B.E. degree from the School of Artificial Intelli-
gence Xidian University, Xi’an, China, in 2020. Currently, He is pursuing
his Ph.D. in the School of Cyber Science and Engineering at Southeast
University supervised by Prof. Ke Xu. His research interests include
network architecture and security.

Xinle Du received the Ph.D. degree with Tsinghua University. His
research interests include data-driven network, data center network
transport protocol and AQM.

Kao Wan received his B.S degree from Peking University in 2008 and
his Ph.D. degree from Tsinghua University in 2018. He now works as an
assistant researcher in Peng Cheng laboratory of China. His research
interests include networking, IoT, SDN, AI and network security..

Ke Xu (Fellow, IEEE) received his Ph.D. degree from the Department of
Computer Science and Technology, Tsinghua University, Beijing, China,
where he serves as a full professor. He has published more than 200
technical papers and holds 11 US patents in the research areas of next-
generation Internet, Blockchain systems, Internet of Things, and net-
work security. He is a member of ACM and senior member of IEEE. He
has guest-edited several special issues in IEEE and Springer Journals,
and also served as Steering Committee Chair of IEEE/ACM IWQoS. He
is an editor of IEEE IoT Journal.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3392486

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 14,2025 at 07:11:02 UTC from IEEE Xplore. Restrictions apply.

	INTRODUCTION
	PROBLEM SETTING
	Background
	Adversary model
	Requirements and assumptions

	OVERVIEW
	PROTOCOL DESIGN
	Cryptographic marks in each packet
	Packet initialization at source and agent
	Lightweight processing at router
	Fault localization at source
	Fault localization with D3-supported destination
	Parameters in D3

	ANALYSIS
	Security analysis
	Performance analysis

	EVALUATION
	Implementation
	Evaluation in BMv2
	Evaluation in hardware
	Performance at agent
	Performance at host

	DISCUSSION
	Incremental deployment
	D3-supported destination could benefit fault localization

	RELATED WORK
	CONCLUSION
	References
	Biographies
	Songtao Fu
	Qi Li
	Xiaoliang Wang
	Su Yao
	Xuewei Feng
	Ziqiang Wang
	Xinle Du
	Kao Wan
	Ke Xu

