
outers are core network equipment that forward data
packets between computer networks. Besides the fun-
damental packet routing capability, modern routers
incorporate a variety of extended functionalities such

as traffic management, packet filtering, and virtual private
networks (VPNs). As a result, router systems are becoming
extremely complex and creating exceedingly high barriers to
network innovations.

Currently, most commercial routers are developed by a few
giant vendors such as Cisco Systems, Inc. and Juniper Net-
works, and the design details are kept secret for commercial
reasons. Routers following traditional closed development
patterns are static, inflexible, and non-modularized, which
causes several problems:
• Functional modules from different vendors cannot support

interoperability.
• Specific functional modules cannot be dynamically installed,

replaced, or updated.
• Numerous R&D teams and individuals are excluded from

routing software component development.
• The closed development pattern and non-modularized

structure leads to a tremendous amount of repetitive coding.

In addition, the Internet has become one of the most impor-
tant infrastructures in our daily life. The unimaginable complexi-
ty of the Internet and the economic tangles among different
network participants including Internet Service Providers (ISPs)
and Content Providers (CPs) are causing the Internet to become
more ossified. We all recognize that network programmability is
important to new protocol experiments and architectural inno-
vations such as Software Defined Networks (SDNs) [1] and
Named Data Networking (NDN) [2], and thus is critical to the
future of the Internet. However, network programmability will
never be achieved until network equipment programmability
becomes a reality. In this article we introduce a practical
approach to building an open, flexible, and modularized recon-
figurable router that can support modular assembly and reuse in
different functional levels, as well as component updates in the
running state. This is recognized as an efficient way to realize
router programmability and flexibility.

Two main technologies that are closely related to our
approach are Click [3] and XORP [4]. Click is a flexible and
configurable routing software architecture that combines sim-
ple elements into a system to achieve desired functions. Com-
pared to our approach, Click only focuses on functional
expansion of the router’s data-forward plane and does not
provide a component development environment. XORP is an
open network platform that solves the code and API closure
problem in routing software architecture. It implements
IPv4/IPv6 protocols and provides a unified platform to config-
ure them. XORP mainly concentrates on the control plane.
Compared to Click and XORP, our reconfigurable routing

R

74 IEEE Network • September/October 2014

Abstract
Modern routers are no longer simple packet routing equipment. They are extremely
complex systems that incorporate various network management functionalities. Due
to system complexity, most commercial routers are developed by a few equipment
vendors in a closed development pattern, which not only hinders the broad partici-
pation of most routing function research and development (R&D) teams, but also
deter the wide deployment of novel network architectures such as Software Defined
Networks (SDNs). In this article a practical approach is introduced to build an
open, flexible, and modularized reconfigurable router. A reconfigurable routing
software platform supporting functional modules is dynamically assembled,
replaced, and updated in the form of components. So far the platform has been
adopted by vendors such as Ruijie Networks in their commercial routers, and it is
running well all the time. Moreover, a component development environment is pro-
vided, which consists of a code editor, a multi-platform compiler, and an automatic
testing tool. A component sharing website has also been built to encourage the
participation of various R&D teams and promote the spread of our open reconfig-
urable development pattern.

Toward a Practical Reconfigurable Router:
A Software Component
Development Approach

Ke Xu, Wenlong Chen, Chuang Lin, Mingwei Xu, Dongchao Ma, and Yi Qu

R

0890-8044/14/$25.00 © 2014 IEEE

Ke Xu, Chuang Lin, Mingwei Xu, and Yi Qu are at Tsinghua University.

Wenlong Chen (corresponding author) is at Capital Normal University.

Dongchao Ma is with North China University of Technology.

CHEN1_LYT_Layout 1 9/10/14 1:12 PM Page 74

software platform (reconfigurable platform for simplicity)
includes all functional components in both the data-forward
plane and the control plane. All approaches achieve high flex-
ibility and easy configuration. However, at present only our
reconfigurable platforms are adopted in commercial environ-
ments.

The contributions of this article are as follows. First we
implemented a reconfigurable platform that includes a Virtual
Operating System (VOS) platform layer that shields operating
system differences and provides the upper layers with unified
application interfaces (APIs), a component control layer that
ensures the collaboration of components, and a routing ser-
vice layer that actually performs routing functions.

The reconfigurable platform is component-based, and more
components mean a shorter development cycle and more
comprehensive routing capabilities. Hence, attracting more
institutions into component development is critical. To facili-
tate the development process and ensure the quality and com-
patibility of components, we provided a component
development environment and a unified standard. We also
built a website to encourage the sharing of components. The
development environment, standard, and website are building
blocks of our open reconfigurable development pattern, which
jointly form our second contribution.

So far the reconfigurable platform has been adopted by
various vendors such as Ruijie Networks, Tsinghua Bitway
Networking Technology Co., Ltd., and H3C Technologies Co.,
Limited. The platform is running reliably in their commercial
routers. Based on the reconfigurable platform, we have com-
pleted several experiments such as virtual network and source
address validation [5–7]. These practical uses and experiments
have validated the correctness and effectiveness of our recon-
figurable platform and development pattern.

The rest of this article is organized as follows. The next sec-
tion presents the requirements and goals of our approach. We
then introduce our reconfigurable platform. We illustrate the
component development process, and then describe the com-
ponent development environment. We then conclude our
open reconfigurable development pattern. The last section
concludes the article.

Requirements and Goals
We first clarify two important concepts that are frequently
used in this article: component and meta-component. A com-
ponent is a complete functional module in routing systems. It
has a detailed function description and clear external inter-
faces and usually exists as a task or process. Typical compo-
nents include Open Shortest Path First (OSPF), Boarder
Gateway Protocol (BGP), TELNET, and so on. A meta-com-
ponent is a complete data processing or functional step in a
component with high cohesion. Compared to components, the
code sizes of meta-components are smaller. Typical meta-
components of routing systems are binary tree management
and Hash storage of routing tables. Based on meta-compo-
nents, code reuse can be obtained during component develop-
ment. A meta-component can be reused multiple times by
various components or a single component.

According to the above requirements, the goals of our
approach are as follows:
• Reconfigurable platform. The reconfigurable platform

should run effectively on different operating systems, and
be adopted by various router vendors. In addition, the com-
ponent collaboration and interaction needs to be properly
handled.

• Component model. A component model should be provid-
ed, such that the features and behaviors including compo-

nent management methods, component states and parame-
ter management, component description and identification,
can be specified clearly. The most important feature of the
component is external interfaces, which shows the compo-
nent’s external characteristics and interaction capabilities.
As to external interfaces, a unified standard is needed to
ensure component compatibility.

• Component development environment. In such an envi-
ronment, developers should be able to edit and compile
components based on meta-components, and reconfig-
urable equipment can get online component installation
and update. Typical routing operating systems such as
VxWorks and Linux need to be supported by the envi-
ronment.

• Component reliability. Component quality may vary since
many institutions are involved in the development process.
As a result, the quality and compatibility of components
need to be ensured by methods such as automatic test tools
and third-party evaluation authorities.

• Component sharing. Qualified components should be
shared among different institutions in a simple and conve-
nient way.

Reconfigurable Routing Software Platform
The architecture of a reconfigurable router is illustrated in
Fig. 1a, and the main constituent of the reconfigurable plat-
form (i.e. components) are developed following the process
shown in Fig. 1b. A reconfigurable router can be divided into
three main parts: hardware, operating system, and a reconfig-
urable platform. In this section we focus on the reconfigurable
platform (component development is described later), which
consists of three layers: the virtual operating system (VOS)
platform layer, the component control layer, and the routing
service layer.

Hardware Layer: There is no difference between reconfig-
urable and traditional router hardware layers. Both kinds of
equipment contain an embedded processor, static random
access memory (SRAM), dynamic random access memory
(DRAM), a field programmable gate array (FPGA), and dedi-
cated chips such as ternary content addressable memory
(TCAM).

VOS Platform Layer: The reconfigurable platform may be
adopted by various vendors, such that the router hardware
and operating systems are different and sometimes incompati-
ble. For example, typical router operating systems are
VxWorks and Linux and the basic functions of these systems
are essentially similar. However, their implementations, inter-
faces, and the methods of managing hardware resources are
quite different. Therefore we need a middleware (i.e. VOS
platform layer) to shield the differences below and provide
unified APIs for layers above. At present, our VOS platform
layer supports two typical router operating systems: VxWorks
and Linux.

Component Control Layer: As shown in Fig. 1, the compo-
nent control layer achieves component assembly and ensures
proper collaborations between components. Component state
management monitors components’ running state and pro-
vides information for component control. Component param-
eter configuration configures core parameters, such that
components can be adjusted to different operational require-
ments.

Component Library and Meta-Component Library: A com-
ponent library provides components for routing software,
while a meta-component library provides the basis for compo-
nent development. It is worth mentioning that neither of them
exists in a running router.

IEEE Network • September/October 2014 75

CHEN1_LYT_Layout 1 9/10/14 1:12 PM Page 75

Routing Service Layer: All routing operations (data for-
warding, packet filtering, etc.) are accomplished on this layer
through the collaboration of lower-layer components. Con-
trolled by the component control layer, components exchange
information through communication interfaces and work
together to achieve route learning, packet forwarding, mes-
sage processing, and other services.

Component Model
The core constituent of the reconfigurable platform is the
component, and the most important aspect of the reconfig-
urable platform is component control, which includes the
component model, interactions, and collaborations. All of
these are discussed later in this article.

A component model describes the main characteristics and
associated behaviors of components, defined as: Mcomponent =
<CT, CI, SM, PC, ID, DI, OB>. A detailed description is as
follows.

Control Topology (CT): Control components in running
state, which mainly include component registration, cancella-
tion, existence notification, and close notification.

Communication Interface (CI): In terms of control plane
components, communication interfaces mainly include proto-
col message reception/transmission and common event mes-
sage communication. As to data plane components, communi-
cation interfaces mainly include data message input/output.

State Monitoring (SM): The reconfigurable platform needs
to monitor the running state of components and conduct con-
trols based on this information. Component state manage-
ment focuses on the process properties of components, such
as the states of running, hang, and wait. We also pay close
attention to statistical information such as the number of mes-
sages sent and received, and the sizes of routing tables on
data plane components.

Parameter Configuration (PC): Component designers set
important parameters (e.g. stack sizes, priorities, and storage

sizes) to meet various application environments and router
configurations. Parameters are configured statically before
components are enabled.

Identifier (ID): The identifier indicates the destinations and
sources of components during communication, e.g. the com-
mon message communication mechanism uses task ID as
identifiers, while in socket communication IP addresses and
port numbers are used as identifiers.

Description (DI): The description includes two parts: a
description of communication interfaces in XML language,
and component functions by a descriptive language given by
component developers. For typical components developed
based on Requests for Comments (RFCs), only RFC numbers
are needed. Otherwise, a detailed description is required.

Object (OB): On the reconfigurable platform, all components
exist in the form of compiled object files. This helps protect
the intellectual property rights of component developers.

Component Interfaces and Associations
Management Interfaces of Components — A component agent
(hereafter referred to as “agent”) is responsible for registra-
tion, cancellation, and correlation of components. Component
management interfaces are specifically designed for compo-
nent management and are used to interact with the agent.
Component management interfaces mainly include two output
interfaces and two input interfaces with fixed names and
usages (shown later in Fig. 2a):
• Component registration message M_IF1: Once a component

starts up, it sends a registration message (including compo-
nent name, identifier, etc.) to the agent and reports its
presence immediately.

• Component cancellation message M_IF2: Normally, compo-
nents send cancellation message to an agent before opera-
tion is stopped.

• Registration notification message M_IF3: Sent to compo-
nents by the agent. If component A applies for registration,

IEEE Network • September/October 201476

Figure 1. (a) Reconfigurable router and (b) component development.

Service component

Routing component Forwarding component

TELNET

Component control layer

Associated component control

Component state management

Component parameter configuration

Filter control

Vxworks Linux

(a) (b)

Heterogeneous operating system/hardware platform development kit

Reconfigurable router

Routing hardware layer

Virtual operating system (VOS) platform layer

...

Route matchingOSPF BGP

FTP

Component
library

Meta-
component

library

Routing service layer...

... ...

Standard

Development of environment

Component test

Component sharing

Component delivery

CHEN1_LYT_Layout 1 9/10/14 1:12 PM Page 76

the agent will send registration notification
messages to all components correlated with A.
At the same time the agent will notify compo-
nent A with information about all components
correlated with it.

• Cancellation notification message M_IF4: Sent
to components by the agent. If component A
applies for cancellation, the agent will send
cancellation notification messages to all com-
ponents correlated with A. Even if A does not
send a component cancellation message, the
agent will trigger a cancellation notification
message after determining component A is
stopped.

Communication Interfaces of Components —
Besides management interfaces whose types and
quantities are fixed, components have several
input/output communication interfaces (C_IFi in
Fig. 2a) to interact with other components. Com-
munication interfaces can be divided into two
types: a protocol packet communication inter-
face, which is designed to interact with other
components for protocol messages, and a control
message communication interface, which exists in
all components.

The quantity and function of communication
interfaces depends on specific requirements. For
example, OSPF component interfaces mainly
consist of protocol packet input/output, interface
state reception, command configuration, and rout-
ing information generation. For a particular com-
ponent, according to the directions of message
transmission, communication interfaces can be
divided into message input interfaces, which receive messages
from upstream components, and message output interfaces,
which send messages to downstream components.

Component Associations — Figure 2b describes an example of
component association, where component registration/cancel-
lation is implemented in the form of starting/stopping a pro-
cess.

Step 1: System initialization. The agent reads the configura-
tion files, which describe the component relationships.

Step 2: Components 1 and 2 are uploaded and then registered
to an agent. The agent determines the relationships between
components 1 and 2 based on the configuration file and
their registration information.

Step 3: The agent forwards the communication ID of regis-
tered components to their upstream components.

Step 4: Components 1 and 2 send messages to each other
through a communication ID obtained from the agent.
After component registration, the agent monitors compo-

nents through heartbeat signals. When a component stops
operation, the agent is responsible for notifying its upstream
components.

Component Development Process
To ensure the quality and compatibility of components, we
provide a unified component/meta-component development
standard. It covers all stages of the component/meta-compo-
nent development process including interface design, source
coding, component/meta-component description, and auto-
matic test. Accomplished components/meta-components are
submitted to third-party authorities to evaluate their compati-

bility with other components/meta-components that interact
with them. Only those components/meta-components that are
compliant with the development standard would go through
the third-party evaluation and be put into the component store.

Key Stages
The component development process includes the following
key stages (as shown in Fig. 3):
1. Component design. Components are designed based on

analysis of modules with high coherence in routing systems.
All functions and interfaces of meta-components should be
generally applicable. Besides, high storage/processing per-
formance are also required.

2. Component description. A large number of components
may be developed by various institutions. Component
descriptions can help developers understand functions and
features of components, and contribute to the management
of component libraries and indexes. In addition, it is also
the basis of component tests.

3. Component development. Developers design specific com-
ponents to meet the functional requirements under compo-
nent descriptions and the unified development standard.
Components could be developed based on existing meta-
components to accelerate the development process and
enhance the code reuse rate. Accomplished components
are submitted to a general component library.

4. Component test. Components in the general component
library should be tested by the automatic testing tool
(described in detail in the section on automatic testing) to
ensure consistency between component functions and
descriptions as well as the normalization and effectiveness
of a component’s external interfaces. The certified compo-
nents will be collected into a certified component library.

IEEE Network • September/October 2014 77

Figure 2. Interfaces and assembly of components.

Communication
message sent to

downstream
components

Communication
message from

upstream
components

Component
cancellation

message

Cancellation
notification

message

Component
registration

message

Registration
notification

message
M_IF1M_IF3

Component

(a)

M_IF2M_IF4

C_IF1C_IFi+1

C_IFiC_IFi+j

Component 2

Step 4

Step 4

(b)

Component 1

Agent

Configuration file

Step 1

Step 2Step 2

Step 3Step 3

CHEN1_LYT_Layout 1 9/10/14 1:12 PM Page 77

5. Component usage. Routing software developers can select
components from the certified component library. ISPs can
also select components from the certified component
library to carry out dynamic function installation or replace-
ment.

Component/Meta-Component Classification
Principle
As mentioned before, a component is a complete functional
module, while a meta-component is a complete data pro-
cessing or functional step. A well-defined principle that
guides the partition of routing system into components and
meta-components does improve the development of the sys-
tems and promote the component/meta-component reuse
rate. However, the boundary between components and
meta-components is sometimes ambiguous. To deal with
this problem, all of the commonly used components/meta-
components are recorded and described in detail. Develop-
ers propose applications whenever a new type of
component/meta-component is developed. Only after com-
prehensive discussion and approval can the new type of
component/meta-component be submitted into the compo-
nent/meta-component store.

Automatic Test
Before submitting to third-party authorities for interaction
evaluation, components/meta-components should be tested by
the automatic test tool, which is part of the open reconfig-
urable development pattern. The automatic test tool includes
two parts: an automatic test management server (ATMS) and
an automatic test execution server (ATES) (shown
in Fig. 4). The ATMS is responsible for user interac-
tions such as test parameter setting and test descrip-
tion. We run it on Windows because Windows
provides a better user experience. The ATES runs
on Linux since test execution involves a huge amount
of computation, and high efficiency is required.

Utilizing the ATMS, all component/meta-compo-
nent information such as input/output interfaces
and important parameters are displayed to users
after an XML parser extracts this information from
the component/meta-component description file.
Whenever test information is configured, the ATMS
calls the ATES to execute the actual test process.

Based on the test information, the ATES auto-
matically generates drivers and stubs. All of the
drivers, stubs, and the to-be-tested components/
meta-components are registered to the agent. After

registration, drivers call the components/meta-components to
be tested to verify its input interfaces and stubs are called by
the to-be-tested components/meta-components to evaluate
their output interfaces. All of the test results are compared
with the component/meta-component description file to ensure
consistency between description and the actual function.

Component Sharing
We have built a component store to accumulate high quality
components. Before a component can be accepted by the
store, a series of conformance and quality tests are performed
by a third-party organization. At present, the third-party orga-
nization is the Research Institute of Telecommunication
Transmission (RITT) of the Ministry of Posts and Telecom-
munications [8], a test authority in China. Conformance tests
consist of two parts. One is performed to evaluate whether
the to-be-tested component is in compliance with the compo-
nent development standard. The other part is performed to
assess its accordance with its own description file. Quality
tests are also needed to ensure the function correctness and
efficiency of the to-be-tested component. As described earlier,
only those components in compliance with the component
development standard and its own description file and with
high quality would go through the third-party evaluation and
be put into the component store.

We have also built a website [9] to share our component
development standard, the library of accomplished compo-
nents/meta-components, and the reconfigurable development
environment. Our website also supports the upload/download
of components/meta-components. A variety of institutions will
share their resources through the website. In order to facili-
tate learning and development, the website also offers a
detailed schematic introduction and user manuals. The
widespread use of the reconfigurable platform and develop-
ment environment will bring enormous social benefits and
also encourage the healthy development of the Internet.

Component Development Environment
Development Environment
We developed a component development environment, which
includes the following parts:
1. Code editor. Developers code directly on the development

environment.
2. Multi-platform compiler. Supporting Linux, VxWorks (Pow-

erPC) and VxWorks (x86).
3. Component/meta-component development management.

Supporting meta-components referenced by components.

IEEE Network • September/October 201478

Figure 3. Key stages of component development process.

General
component library

Meta-
components

Components

Components

Heterogeneous operating
systems

Heterogeneous hardware
platforms

Virtual operating systems (heterogeneous platform development kit)

Component
development

Component
assembly

Component testing
and validation

Certified component library

Component
description

Component
interface

specification

Figure 4. Automatic test.

Automatic test execution server
(Linux)

Automatic test management server
(Windows)

Driver

XML parser

U
ser interface (U

I)

Testing paramenters
setting

Testing description file

Interaction with
automatic testing

management server

To-be-tested
component/

meta-component

Stub

Agent
Testing
results

comparison

To-be-tested
component/

meta-
component

CHEN1_LYT_Layout 1 9/10/14 1:12 PM Page 78

4. Component simulation. Designing stubs and drivers to con-
duct component testing according to the component
description.

5. Component assembly control. Forming specific routing
functions through component assembly.
The development environment shields the differences of

operating systems, making the entire development process
based on a unified environment. The development environ-
ment is the foundation of our open reconfigurable develop-
ment pattern and it supports all aspects of the reconfigurable
platform. Moreover, it promotes the widespread use of the
open reconfigurable development pattern by providing any
individual or R&D team with a visual programming environ-
ment.

Practical Deployment
Under the unified development standard, our project team
has developed 10 meta-components, as shown in Fig. 5a. (The
third column lists the components using the corresponding
meta-component). We also developed the following 12 com-
ponents: BGP, OSPF, Routing Information Protocol (RIP),
Routing Management (RM), Packet Forwarding (PF), Source
Address Validation (SAV), Tunnel Encapsulation/De-encap-
sulation (TEn/De), Packet Translation (PT), TELNET, File
Transfer Protocol (FTP), Secure Shell (SSH), and Manage-
ment Information Base (MIB).

Some components (e.g. BGP, OSPF, and RIP) have
already been used by multiple types of routers manufactured
by Ruijie Networks, Tsinghua Bitway Networking Technolo-
gy Co., Ltd., and H3C Technologies
Co., Limited, etc. All components
in commercial routers are perform-
ing reliably and have passed the
function conformance test per-
formed by RITT. We compared the
code reuse rates between a tradi-
tional development pattern and our
open reconfigurable development
pattern. The results are shown in
Fig. 5b. Our open component devel-
opment pattern significantly
improved the code reuse rate in the
development of functional compo-
nents such as BGP, OSPF, RIP, and
RM. Moreover, the workload of
source coding is also reduced signif-
icantly after we developed compo-
nents based on universal meta-
components.

Open Reconfigurable Development Pattern
The open reconfigurable development pattern for the recon-
figurable platform is shown in Fig. 6. First, institutions (e.g.
router vendors, R&D teams, and individuals) use the compo-
nent development environment to develop their own compo-
nents/meta-components. The development process is obliged
to follow the component development standard. Then all
components/meta-components are tested by automatic test
tools and third-party authorities. The tests can be done
through virtual simulation or integrating components/meta-
components in a typical router system in actual equipment
and network scenarios. The components/meta-components
that passed the authority tests can be added to a compo-
nent/meta-component store for sharing.

Institutions require components capable of extracting certi-
fied components from the component store. R&D teams or
equipment manufacturers will leverage the certified compo-
nents for their routing product development. In order to
increase or update routing functions of network equipment,
ISPs can utilize certified components for their reconfigurable
routing equipment. Furthermore, networks can provide pro-
grammability through reconfigurable equipment.

The benefits of our open reconfigurable development pat-
tern, which is similar to the Android market and the App
Store (iOS), are twofold. On the developer side, they are
motivated to develop various components/meta-components
and put them into the store to obtain increased economic
benefits. On the consumer side, the development process of

IEEE Network • September/October 2014 79

Figure 6. Open reconfigurable development pattern.

Component
store

Component
development

Individuals

R&D teams Third-party authorities

Component
test

Reconfigurable
platform

Router vendors Component sharing
website

Component
development
environment

Manufactories

Core
network

Campus
network

Experimental
network

ISPs

Reconfigurable
routers

Figure 5. (a) Major meta-components; (b) code reuse rate comparisons.

Function module
(b)(a)

BGP

0.2

0

C
od

e
re

us
e

ra
te

0.4

0.6

0.8

OSPF

Meta-component

OLL

DLL

HS

WDOCM

FSM

DMC

TM

SM

NISM

Function description

One-way link list

Doubly linked list

Hash storage

Network development oriented
memory management

Finite state machine

Distributed messaging
communication

Timer management

Skbuf management

Network interface status
management

Components

All

All

BGP, SAV, PT

All

BGP, OSPF, RIP, SAV

All

All

PF, SAV, TEn/De, PT

BGP, OSPF, RIP, RM
PF, SA, TEn/De, PT

RIP RM

Traditional mode
Reconfigurable mode

CHEN1_LYT_Layout 1 9/10/14 1:12 PM Page 79

routing systems are accelerated and simplified utilizing the
high quality components/meta-components in the store.

Conclusion
This article proposed a reconfigurable routing software plat-
form and the corresponding open reconfigurable development
pattern, which overcome the closed, non-component deficien-
cies of traditional routing systems. The platform allows soft-
ware modules in routing systems to be dynamically assembled
and replaced in the form of components. It also supports flex-
ible component reuse, which shortens the development cycle
of routing systems. The open reconfigurable development pat-
tern supports component development of any R&D team that
follows a unified standard. These tested components will be
integrated into the store.

Our reconfigurable platform is one of the ways to provide
router programmability, which is critical to SDN. To support
SDN, during the deployment phase we could deploy reconfig-
urable routers and controllers in networks. Reconfigurable
routers are responsible for packet forwarding. Whenever a
new type of protocol needs to be deployed, corresponding
components could be installed dynamically on reconfigurable
routers under the command of controllers. In this way, net-
work programmability and flexibility are ensured.

Our project team has completed the development of 10
meta-components and 12 components, and provided a compo-
nent development environment, which simplified the develop-
ment process. Moreover, we established a components/
meta-components store, provided a website for component
sharing, and implemented a reconfigurable platform. So far,
the open reconfigurable platform has been adopted by various
vendors such as Ruijie Networks, Tsinghua Bitway Network-
ing Technology Co., Ltd., and H3C Technologies Co., Limit-
ed, in their commercial routers, and it is running reliably.

Acknowledgment
This research is supported by New Generation Broadband
Wireless Mobile Communication Network of the National Sci-
ence and Technology Major Projects (2012ZX03005001),
NSFC Project (61170292, 61373161), 973 Program
(2012CB315803), 863 Program (2013AA013302), and EU
Marie Curie Actions Evans (PIRSES-GA-2010-269323).

References
[1] N. McKeown et al., “Openflow: Enabling Innovation in Campus Net-

works,” ACM SIGCOMM Computer Commun. Review, vol. 38, no. 2,
Apr. 2008, pp. 69–74.

[2] L. Zhang et al., “Named Data Networking (ndn) Project,” Relatório Técni-
co NDN-0001, Xerox Palo Alto Research Center (PARC), 2010.

[3] E. Kohler et al., “The Click Modular Router,” ACM Trans. Computer Sys-
tems, vol. 18, no. 3, Aug. 2000, pp. 263–97.

[4] M. Handley, O. Hodson, and E. Kohler, “Xorp: An Open Platform for Net-
work Research, ACM SIGCOMM Computer Commun. Review, vol. 33,
no. 1, Jan. 2003, pp. 53–57.

[5] M. Xu et al., “Veganet: A Virtualized Experimentation Platform for Produc-
tion Networks with Connectivity Consistency,” IEEE Network, vol. 26, no.
5, Sept. 2012, pp. 15–21.

[6] Y. Cui et al., “4over6: Network Layer Virtualization for IPv4–IPv6 coexis-
tence,” IEEE Network, vol. 26, no. 5, Sept. 2012, pp. 44–48.

[7] G. Hu et al., “A General Framework of Source Address Validation and
Traceback for IPv4/IPv6 Transition Scenarios,” IEEE Network, vol. 27, no.
6, Nov. 2013, pp. 66–73.

[8] http://www.ritt.cn
[9] http://www.netlab.edu.cn/drrp/index2.html

Biography
KE XU [M’02–SM’09)] (xuke@tsinghua.edu.cn) received his Ph.D. from the
Department of Computer Science and Technology, Tsinghua University, where
he serves as a full professor. He has published more than 100 technical
papers and holds 20 patents in the research areas of next generation Internet,
P2P systems, Internet of Things (IoT), network virtualization and optimization.
He is a member of ACM. He has guest edited several special issues in IEEE
and Springer Journals. Currently he is holding a visiting professor position at
the University of Essex.

WENLONG CHEN (wenlongchen@sina.com) received a Ph.D. degree. He is cur-
rently a lecturer in the College of Information Engineering of Capital Normal
University. His research interests include network protocol and network archi-
tecture.

CHUANG LIN (chlin@tsinghua.edu.cn) is a professor in the Department of Comput-
er Science and Technology, Tsinghua University, Beijing, China. He is an Hon-
orary Visiting Professor at the University of Bradford, UK. He received the Ph.D.
degree in computer science from the Tsinghua University in 1994. His current
research interests include computer networks, performance evaluation, network
security analysis, and Petri net theory and its applications. He has published
more than 400 papers in research journals and IEEE conference proceedings in
these areas, and has published four books. Professor Lin is a senior member of
the IEEE. He served as the General Chair of the ACM SIGCOMM Asia Work-
shop 2005 and the 2010 IEEE International Workshop on Quality of Service
(IWQoS 2010). He is an associate editor of IEEE Transactions on Vehicular
Technology, and an area editor for the Journal of Computer Networks.

MINGWEI XU (xmw@cernet.edu.cn) received the B.Sc. and Ph.D. degrees in
computer science and technology from Tsinghua University, Beijing, China, in
1994 and 1998, respectively. He is a full professor in the Department of
Computer Science and Technology, Tsinghua University. His research interests
include computer network architecture, high speed router architecture, Internet
routing, and network virtualization.

DONGCHAO MA (madongchao@csnet4.cs.tsinghua.edu.cn) has a Ph.D. and is
an associate professor at the Information Engineering Institute, North China
University of Technology. His research interests include Next Generation Inter-
net, network management, and traffic flow management.

YI QU (quy11@mails.tsinghua.edu.cn) received his B.Eng. degree in software
engineering from the University of Electronic Science and Technology of China
in 2011. Currently he is a Ph.D. student in the Department of Computer Sci-
ence and Technology of Tsinghua University. His research interests include
wireless networks and wireless sensor networks.

IEEE Network • September/October 201480

CHEN1_LYT_Layout 1 9/10/14 1:12 PM Page 80

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

