
1

DiffECN: Differential ECN Marking for Datacenter
Networks

Hanlin Huang, Graduate Student Member, IEEE, Ke Xu, Fellow, IEEE, Member, ACM, Tong Li, Member, IEEE,
Zhuotao Liu, Xinle Du, Xiangyu Gao

Abstract—ECN marking has been integrated into datacenter
switches to enable high-throughput and low-latency transport.
We observe that current marking schemes are coarse-grained:
they blindly mark all flows when congestion occurs, causing large
flows to occupy undeserved bandwidth and preventing newly
arriving small flows from finishing quickly. In this paper, we
propose DiffECN, a differential marking strategy that marks
only the flows that are the culprits of congestion and protects
the remaining flows from being limited. We have implemented
it in the Barefoot Tofino switch and performed extensive eval-
uations via both physical testbed and large-scale simulations.
The results show that DiffECN can restrain flows responsible
for congestion successfully while providing desirable network
performance. For instance, compared to the legacy way of ECN
marking, DiffECN achieves up to 32.5% (40.1%) lower average
(99th percentile) flow completion time (FCT) for small flows
while delivering similar FCT for large flows under production
workloads.

Index Terms—ECN Marking, Congestion Control, Datacenter
Network.

I. INTRODUCTION

DATACENTERS host a variety of applications and ser-
vices with diverse network requirements. For example,

web search [1] and distributed memory caches [2] require
low latency, whereas others like cloud storage and parallel
computing require high throughput. To accommodate these
diverse requirements, the community designed multiple end-
to-end congestion control algorithms [1], [3], [4], [5], [6], [7].
However, many of them need to be deployed on specialized
hardware network interface cards (e.g., Swift [7], HPCC [4])

This work is supported in part by the National Key Research and De-
velopment Program of China (No.2022YFB3102301), the China National
Funds for Distinguished Young Scientists (No.62425201), the NSFC Projects
(No.61932016, No.62132011, No.62221003 and No.62202473), the CCF-
Huawei Populus Grove Fund. (Corresponding author: Tong Li and Ke Xu.)

Hanlin Huang is with Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China (e-mail:
hhl21@mails.tsinghua.edu.cn).

Ke Xu is with Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China, and also with Zhongguancun Laboratory,
Beijing 100094, China (e-mail: xuke@tsinghua.edu.cn).

Tong Li is with Key Laboratory of Data Engineering and Knowledge
Engineering, Renmin University of China, Beijing 100872, China (e-mail:
tong.li@ruc.edu.cn).

Zhuotao Liu is with Institute for Network Sciences and Cyberspace,
Tsinghua University, Beijing 100084, China, and also with Zhongguancun
Laboratory, Beijing 100094, China (e-mail: zhuotaoliu@tsinghua.edu.cn).

Xinle Du is with Huawei, Shenzhen 518129, China (e-mail:
duxinle1@huawei.com).

Xiangyu Gao is with Institute for Network Sciences and
Cyberspace, Tsinghua University, Beijing 100084, China (e-mail:
gaoxy21@mails.tsinghua.edu.cn).

Marked

Unmarked

P

Marking
Threshold

(c) Per-flow marking

Marked

P

Marking
Threshold

(b) Per-queue marking

Marked

Outgoing
packets

P

F1

F2

F3

F4

Incoming
flows

(a) Per-port marking

Queue
F1

F2

F3

F4

F1

F2

F3

F4

Marking
Threshold

Fig. 1. Examples of different granularity of ECN marking.

or require the support of infinite queues (e.g., pFabric [8]), in-
curring significant deployment effort in large-scale datacenters
with heterogeneous fabrics [9]. Additionally, in multi-tenant
datacenters, modifying the network protocol stack at the end-
hosts imposes another layer of deployment challenges [10],
[11].

To complement the host-based congestion control, re-
searchers have explored in-network congestion signals [12],
[13], [14]. One example is Explicit Congestion Notification
(ECN), which is widely deployed in datacenters. A packet
marked with the ECN bit indicates that congestion is immi-
nent. Many production datacenter transport protocols (e.g.,
DCTCP [1], DECbit [15], DCQCN [3]) rely on ECN to
observe congestion and adjust the sending rate accordingly.

However, existing ECN markings may negatively impact
network performance, particularly by prolonging the flow
completion times (FCTs) for small flows. Existing approaches
about ECN marking can be roughly divided into two cate-
gories: per-port marking [16], [17], [18], [13] and per-queue
marking [19], [20]. As shown in Fig. 1(a) and (b), all flows
traversing the same outgoing port, or sharing the same queue,
are marked without distinction. We argue that the granularity
of per-port or per-queue marking is too coarse, resulting in
unfair bandwidth allocation. When competing against a high-
demand flow that is the culprit of congestion, new flows
may fail to get their fair shares of bandwidth in time. Our
preliminary experiments (see § III-A) show that it takes 15ms
and 13ms for new flows to converge to their fair shares under
per-port and per-queue marking, respectively, whereas only
0.5ms on an idle link. Small flows may not even receive
their fair shares before they finish, leading to service-level
agreement (SLA) violations [21].

Motivated by our observations, we propose DiffECN (Dif-
ferential ECN marking), a simple but effective congestion
marking policy that explores a more fine-grained and explicit
congestion control. As shown in Fig. 1(c), the key idea of
DiffECN is to adopt a more fine-grained scheme toward per-
flow marking. Specifically, DiffECN only marks “congested”

2

flows that occupy more than their fair shares of bandwidth.
By reducing their rates in time, DiffECN helps to make room
for the “non-congested” flows, so that these flows can receive
their fair shares quickly.

To realize DiffECN, we need to address two primary chal-
lenges. The first one is to efficiently manage flows at a per-flow
granularity level. Given the existing multiple egress queues
in modern programmable switches [22], [23], one strawman
design is to assign an empty queue for each individual flow.
However, given the finite number of available queues, this
strawman approach is not scalable in datacenters with high
level of flow concurrency and frequent bursts [24]. The second
challenge is to precisely identify congested flows on the
dataplane. A vanilla design to identify a congested flow is
measuring the rate of the flow and comparing it with its
fair share of the available bandwidth. However, real-time per-
flow rate measurement is computationally intensive and is
hardly available on programmable switches (due to the lack
of sufficient memory and support of arithmetic division [25]).

To address these challenges, DiffECN designs two innova-
tive components: the Queue Mapping Unit (QMU) and the
Selective Marking Unit (SMU). In QMU, we initially track
active flows only. We allocate a specific queue with high pri-
ority to implement controlled scheduling for flow enqueuing.
And we use packet-triggered probing to prevent other queues
from suffering starvation. This effectively addresses the first
challenge. The second challenge is solved by the SMU. We re-
construct the ECN marking guideline based on fairness among
active flows. By separately comparing the buffer occupancy of
each active flow with the dynamic marking threshold, we can
accurately identify congested flows and apply the necessary
marking in time, thereby avoiding challenges associated with
rate measurement. At a high level, DiffECN deploys per-flow
marking when the number of active flows is within the limit
of available queues. However, if the number of active flows
exceeds the number of available queues, DiffECN smoothly
switches to a modified per-queue marking scheme. To the best
of our knowledge, DiffECN is the first work that approximates
the goal of per-flow ECN marking in datacenters (see § IV).

We implement a prototype of DiffECN based on a Bare-
foot Tofino1 switch. The testbed experiments demonstrate
that, given a realistic network workload, DiffECN can ef-
fectively mark flows with finer granularity and reduce the
99th percentile flow completion time (FCT) of small flows
by up to 40.1% without impairing large flows. We further
perform large-scale ns-3 [26] simulations. The quantitative
results confirm that DiffECN advances state-of-the-art marking
schemes in various aspects. Moreover, DiffECN can achieve
good performance even in the presence of flow bursts because
the queue length remains small.

The rest of the paper is organized as follows. We introduce
the background in § II and insights into DiffECN in § III.
§ IV illustrates the design of our solution. § V describes the
implementation. In § VI, we evaluate DiffECN in ns-3 and
a small-scale testbed. § VII discusses details and limitations
and § VIII surveys the related work. Finally, we conclude this
paper in § IX.

II. BACKGROUND

A. Congestion marking for end-to-end congestion control

Congestion management, developed by Data Center Bridg-
ing Task Group [27], consists of two main modules: congestion
detection and rate regulation. Generally, congestion detection
is performed by switches, while the latter is handled by end-
hosts. With the support of ECN, the switch marks CE instead
of dropping packets [16]. When the average or instantaneous
queue length exceeds the threshold set by the ECN, the switch
responds by marking the CE bit as “11” according to the RED
algorithm [28], to which the transport layer responds.

Many extant end-to-end congestion control algorithms rely
on ECN marking to detect congestion. For example, DCTCP
[1] and DCQCN [3], two commonly used protocols in pro-
duction datacenters, both use RED with conventional ECNs at
the switch and marked-packet aware algorithms at the end-host
to regulate the rate. The precision of the congestion marking
significantly affects the assessment of congestion level by end-
to-end congestion control.

B. The guideline for ECN marking

In production datecenters, network operators commonly use
instantaneous buffer occupancy to mark ECN, enabling faster
reaction to traffic bursts [1], [29]. A departing packet is marked
only when the instantaneous buffer occupancy surpasses a
specific threshold, denoted as K. We consider an idealized
scenario where several parallel long flows with the same
round-trip time (RTT) share a bottleneck link with capacity
C (in bits/s). Previous studies [19], [29] have shown that
to maximize link capacity utilization while maintaining low
latency, the ECN marking threshold K should be set as
follows.

K = λ ∗ C ∗RTT (1)

where λ is a parameter decided by congestion control algo-
rithms (e.g., λ = 0.17 for DCTCP theoretically [30]).

Apart from the port-level setting, an alternative ECN mark-
ing scheme is based on per-queue. In this scheme, each egress
queue is assigned its own marking threshold. For instance,
MQ-ECN [19] implements varying marking thresholds based
on the weight assigned to each queue. Rather than considering
the port capacity, MQ-ECN utilizes the rate of the queue
(denoted as Ri) and sets the threshold as λ ∗Ri ∗RTT . It is
evident that regardless of the specific threshold setting method
used, flows entering the same port or queue will share the
same marking threshold. Consequently, they will experience
the same congestion status.

III. OBSERVATION AND INSIGHT

A. Current congestion marking is unexplicit

When multiple flows share the same bottleneck link, per-
port or per-queue marking policies may impose unexpected
problems for flow control. In this section, we conduct fine-
grained simulation experiments on a shared bottleneck link
to examine the inaccuracy of current marking policies in the
presence of flow competition.

3
35pt

: R153 G0 B0

:

LT Medium

: Arial

32pt

: R153 G0 B0

黑体

22pt

) :18pt

黑色

:

LT Regular

: Arial

20pt

):18pt

黑色

细黑体

S1
Pswitch

congested linkF1

F2

F3 F4

Time 0: F1 -> R, 25Gbps
Time 1: F2 -> R, 10Gbps
Time 2: F3,F4 -> R, 5Gbps

at 0ms: F1 -> R, 25Gbps at 30ms: F2 -> R, 13Gbps
at 60ms: F3,F4 -> R, 5Gbps

S2

S3 S4

R

H1 H29S1 S2 H1’ H29’ R1 R2

S1 S2 S3 S4 R

C0 C1

A0 A1 A2 A3

T0 T1 T2 T3

Fair shares of bandwidth when suffering from congestion:
F1: 15Gbps; F2: 15Gbps; F3/F4: 5Gbps

F1 F2 F3/F4

30~60ms 25 15 0

60~70ms 15 15 5

(a) Compact and typical network sce-
nario.

35pt

: R153 G0 B0

:

LT Medium

: Arial

32pt

: R153 G0 B0

黑体

22pt

) :18pt

黑色

:

LT Regular

: Arial

20pt

):18pt

黑色

细黑体

S1
Pswitch

congested linkF1

F2

F3 F4

Time 0: F1 -> R, 25Gbps
Time 1: F2 -> R, 10Gbps
Time 2: F3,F4 -> R, 5Gbps

at 0ms: F1 -> R, 25Gbps at 30ms: F2 -> R, 15Gbps
at 60ms: F3,F4 -> R, 5Gbps

S2

S3 S4

R

H1 H29S1 S2 H1’ H29’ R1 R2

S1 S2 S3 S4 R

C0 C1

A0 A1 A2 A3

T0 T1 T2 T3

Fair shares of bandwidth when suffering from congestion:
F1: 15Gbps; F2: 15Gbps; F3/F4: 5Gbps

F1 F2 F3/F4

30~60ms 25 15 0

60~70ms 15 15 5

(b) Compact unit in Fat-Tree.

Fig. 2. Unfair marking phenomenon.

Simulation setup. We use a topology as illustrated in Fig.
2(a). There are four senders S1-S4, and all of them have R
as the shared destination. This is a basic topology unit in
modern multi-rooted datacenters like Fig. 2(b) (e.g., Fat-Tree
[31], Leaf-Spine [32]). In Fig. 2(a), we simulate the end-
to-end transmission process in datacenters [33]. The switch
corresponds to T3 in Fig. 2(b). The links, each with a speed of
40Gbps, exhibit a propagation delay of 13us for the link from
senders to the switch, and one hop delay of 1us for the link
from the switch to the receiver1. DCTCP is adopted in all end-
hosts with recommended congestion control parameters [1].
For the ECN marking threshold, we refer to Eq. (1), consistent
with the DCTCP setting.

In this case, S1 and S2 send a long-lived flow to R, and S3-
S4 send shorter flows (with a size bigger than one bandwidth-
delay product). We assume that the application layer sends
data at a fixed rate. Suppose that F1 achieves 25Gbps at
the beginning of the simulation. After 30ms, S2 starts F2 at
13Gbps 2. At this moment, the aggregate transmission rate of
F1 and F2 reaches 38Gbps, which is less than the link capacity.
Port P has not yet experienced congestion. At 60ms, two
concurrent flows, F3 and F4, start at 5Gbps simultaneously.
By now, the total speed of the four flows is 48Gbps, exceeding
the link capacity. Port P is encountering congestion and the
queue starts to build up. In our experiments, all senders are
set to have a fixed sending rate when no congestion happens.
According to the definition of max-min [34], the fair shares of
bandwidth are shown in Table I. When the four flows coexist,
their fair shares are 17, 13, 5, and 5 Gbps. We can calculate
these by using the water-filling algorithm in § III-B.

TABLE I
THE MAX-MIN FAIR BANDWIDTH FOR FLOWS (UNIT: GBPS).

Time(ms) F1 F2 F3/F4 Time(ms) F1 F2 F3/F4
30∼60 25 13 0 60∼70 17 13 5

Throughput evolution. Fig. 3(a) displays the throughput of
these four flows over time. Initially, we observe that F2 takes
13ms to reach 13Gbps throughput from startup. After the
arrival of F3 and F4, F2’s throughput declines for 4ms. From
the above phenomenon, we can see that F2 takes a long time
to reach a fair bandwidth at startup. When new flows arrive, its
fair bandwidth is compromised again. Initially, we observe that
F2 maintains a steady throughput of 13Gbps until 60ms. After
the arrival of F3 and F4, its throughput decreases to 12Gbps.
But in terms of max-min fairness, when the flows share a

1We set the delay according to PowerTCP [33].
2F2 can also include delay-sensitive short flows. For brevity, we set F2 to

be a long-lived flow in this case study.

35pt

: R153 G0 B0

:

LT Medium

: Arial

32pt

: R153 G0 B0

黑体

22pt

) :18pt

黑色

:

LT Regular

: Arial

20pt

):18pt

黑色

细黑体

12Gbps

15ms

finish

finish

4ms

73

(a) Throughput for each flow.

10 20 30 40 50 60 70 80 90
Time/ms

0
F3/F4

F2
F1

M
ar

ke
d

pa
ck

et
s

(b) Markings on flows.

Fig. 3. Throughput and marking under ECN.

40Gbps bottleneck link, F2’s fair share bandwidth should be
13Gbps. Hence, F2’s throughput falls short of its fair share.

For F3 and F4, their throughput gradually increases until
they achieve 5Gbps at around 64ms. It takes up to about 4ms to
reach the target rate from startup. From Table II, it only needs
0.1ms to reach the desired bandwidth when the link is idle. The
two flows experience a slow ramp-up in throughput, making it
challenging to attain a fair share in a short time. Similarly, we
also conduct the experiment using per-queue marking (MQ-
ECN). The newly coming small flows need 3.5ms to converge
to their fair share of bandwidth. It also has an unfair impact
on the bandwidth of small flows, leading to longer FCT (see
Fig. 15(c) and 15(d)).

TABLE II
THE TIME REQUIRED FOR CONVERGENCE.

Scheme Idle-link ECN MQ-ECN DiffECN
Time(ms) 0.1 4 3.5 0.5

Analysis. To investigate the cause of the aforementioned issue,
we conduct a thorough analysis of the ECN marking of each
flow in Fig. 3(b). Not surprisingly, when the congestion occurs
on the link at 60ms, F2, F3 and F4 are also marked frequently
besides F1. At this point, packets begin to accumulate in port
P. When the length of the port exceeds the setting threshold,
all packets are marked regardless of which flow the packet
belongs to. The same holds for per-queue marking. As packets
accumulate, packets in a queue would suffer from the same
congestion state. Once marked, the end-host determines the
degree of congestion based on the proportion of marked pack-
ets and reduces the sending window. This explains why F2’s
throughput is influenced and F3 and F4 take a comparatively
long time to reach a steady state.

From the above analysis, we observe that all flows traversing
the same bottleneck link share the congestion state. The cur-
rent congestion marking policy cannot explicitly differentiate
between flows and treats all packets equally once congestion
occurs. Even flows with rates below fair share bandwidth
are also marked, resulting in unfair bandwidth allocation.
It becomes challenging to achieve the desired throughput
promptly for new coming flows. In particular, bursty flows

4

35pt

: R153 G0 B0

:

LT Medium

: Arial

32pt

: R153 G0 B0

黑体

22pt

) :18pt

黑色

:

LT Regular

: Arial

20pt

):18pt

黑色

细黑体

13Gbps

15ms

finish

finish

3.5ms

71.5

finish

0.5ms

71.5

(a) Throughput for each flow.

10 20 30 40 50 60 70 80 90
Time/ms

0
F3/F4

F2
F1

M
ar

ke
d

Pa
ck

et
s

(b) Markings on flows.

Fig. 4. Throughput and marking under DiffECN.

are frequent in datacenters [35], where the latency would be
severely affected, leading to unacceptable SLA violations.

Fig. 4(a) depicts the results of using our strategy in the
same experimental setting. When the link is congested, the
throughput of F2 remains 13Gbps. Moreover, it takes only
0.5ms for F3 and F4 to attain a fair share bandwidth of 5Gbps,
while F1 decreases to a fair share of 17Gbps in a shorter
period. Finally, F3 and F4 finish about 1.5ms earlier compared
to traditional ECN because DiffECN provides more precise
control of each flow’s rate. DiffECN accurately marks F1 and
F2 and do not harm F3 and F4 whose rates are below their fair
bandwidth. Deserved bandwidth is guaranteed while ensuring
faster completion time for newly arriving flows.

B. It is time to revisit congestion marking

Based on our observation in § III-A, we should first curb
flows with the rate larger than the fair share. We define the
two types of flows as follows.

• Congested flows: The demand rate exceeds the fair share
of bandwidth.

• Non-congested flows: The demand rate does not exceed
the fair share of bandwidth.

We can refer to the literature [36] to calculate the corre-
sponding fair share allocation based on each flow’s demand
and the bottleneck link’s capacity. The most commonly used
calculation is an iterative water-filling algorithm [37]. Intu-
itively, this algorithm works by initializing all flows to be
unconstrained with an allocated bandwidth of 0. For each
iteration, it adds equal amounts to all unconstrained flows until
at least one flow reaches its demand rate. It then continues to
allocate bandwidth to the remaining flows. The algorithm stops
iterating until all bandwidth on the bottleneck link has been
allocated. In our example, when the four flows F1-F4 coexist,
the fair share bandwidths of them are 17, 13, 5, and 5 Gbps,
respectively.

In § III-A, both F1 and F2 were non-congested flows until
the arrival of F3 and F4. Afterward, F1 becomes a congested
flow and the remaining three flows are all non-congested flows.
Since the switch treats all flows’ states as the same, it marks

35pt

: R153 G0 B0

:

LT Medium

: Arial

32pt

: R153 G0 B0

黑体

22pt

) :18pt

黑色

:

LT Regular

: Arial

20pt

):18pt

黑色

细黑体

RPswitchF2

Queue
Mapping Unit

Mark
Decision

mark!

no mark

outgoing
packets

P

new flow？

N Y

Assign
new

queue

Search
by

flowid

Selective
Marking Unit

get per-flow
buffer

congested
flow or not？

differential
marking

marking threshold

F1

F2

F3

F4

incoming
flows

switch

Fig. 5. The main components of DiffECN.

them when congestion occurs, affecting bandwidth fairness
and convergence speed.

To address this concern, the optimal solution is to pri-
oritize the marking of congested flows since they consume
more bandwidth than their fair shares. Reducing the rate of
congested flows can rapidly release more bandwidth for the
remaining flows. Simultaneously, it is crucial to minimize
or avoid marking non-congested flows. These flows are not
responsible for the congestion and should be protected to
ensure they promptly receive their fair share of bandwidth.

IV. DESIGN

Our objective is to develop a per-flow congestion marking
scheme that addresses the mentioned issues by marking each
flow in a distinct manner. The proposed approach should be
straightforward to implement in production datacenters, capa-
ble of coexisting with existing requirements without requiring
modifications to the current network stack. Furthermore, it
should maintain high performance levels across different traffic
loads and network sizes.

A. Overview

Fig. 5 illustrates the main components of DiffECN:
(1) Queue Mapping Unit (QMU): To determine marking at

per-flow granularity, QMU checks if a packet belongs to a new
flow when it arrives. It then assigns the packet to an allocated
queue or one of the empty outgoing queues on the egress
port. This ensures that each flow occupies an empty queue
as much as possible. However, a significant challenge arises
when dealing with a large number of flows. While modern
programmable switches like Tofino1 and Tofino2 offer 32 and
128 queues per port, respectively [22], [23], the available
queue space is still limited compared to the vast number
of potential flows. In production datacenters, thousands of
services may concurrently transmit traffic [24]. Given this
scenario, how can we guarantee that an empty queue is
allocated for each flow?

(2) Selective Marking Unit (SMU): Before sending out
packets of each flow, SMU decides whether to mark them
based on the flow’s buffer occupancy. The marking of each
flow is independent and not influenced by other flows. A
straightforward example to illustrate this process is shown
in Fig. 5. The switch permits four flows F1-F4 and each
flow is matched to a distinct queue on port P. The buffer
occupancy of each queue varies due to the different flow rates.
Prior to forwarding packets to the link, SMU assesses the

5

need for marking based on the queue length of each flow.
Consequently, packets belonging to F2 and F4 are marked,
while the other two flows remain unaffected. Although all
flows experience the same congestion port, DiffECN treats
each flow differentially, marking only the culprit congested
flows and leaving the other flows’ normal speed unaffected.
But how does DiffECN precisely identify the flow that
needs to be marked, i.e., congested flows?

B. Queue Mapping Unit

To avoid state sharing and head-of-line (HOL) blocking
across flows, we dynamically allocate a separate outgoing
queue for each flow. When a new flow is detected, an available
empty queue is selected to serve this flow. Subsequent packets
belonging to the same flow will be directed to the same
queue based on the flow’s identification. Each flow is uniquely
identified by a set of five tuples, namely, source IP, destination
IP, source port, destination port, and protocol number, which
together form the flow’s identification. We determine which
queues are empty by tracking the flow’s buffer occupancy. As
soon as the last packet in a queue is scheduled out, this queue
status is reset.

Although the operation may appear straightforward, man-
aging the enormous volume of datacenter traffic poses a
significant challenge in providing an empty queue for each
flow. To address the scalability limitations of the flow space,
we unfold it in two steps:

1) Step1: Only track active flows: Ideal per-flow control
requires a substantial buffer to save per-connection state un-
til the connection is disconnected, which is impractical in
contemporary datacenter switches. Nonetheless, we observe
that saving every individual connection state is unnecessary.
Most of the time, the per-connection state is for flows that
have no packets queued on the switch, so controlling them is
unnecessary.

We define an active flow as one that has one or more
packets queued in the switch. In practice, the number of
active flows traversing a switch is small [38]. As described in
previous subsection, modern Barefoot programmable switches
are equipped with numerous queues (32 in Tofino1, 128 in
Tofino2), allowing for the allocation of an empty queue for
each active flow in general. According to the literature [6],
in the Google datacenter, the number of active flows only
significantly surpasses the number of queues available under
extreme high load. We need to avoid using FIFO queuing
strategy for a port because the number of active flows will
be large due to a single big flow blocking a multitude of
small flows. Instead, the packet scheduler uses deficit round
robin [39] to implement fair queuing among active queues
(containing packets), but packets within a queue are forwarded
in FIFO order. We have conducted a simple test in fat-tree
topology with 128 hosts to compare the difference between the
traditional and our schemes. Fig. 6 shows the statistics under
both schemes over a period of time. The average number of
active flows is 25, only about 20% of that of connections. By
tracking only active flows, we can drastically reduce the flow
space that needs to be maintained.

0.2 0.4 0.6 0.8 1.0
Time/s

0

50

100

150
saved connection
active flow

Fig. 6. The number of connections and active flows.

0 10 20
0.00

0.25

0.50

0.75

1.00

CD
F

L: load

40G

0.4 L
0.5 L
0.6 L

0.7 L
0.8 L
0.9 L

0 20 40 60 80
0.00

0.25

0.50

0.75

1.00
100G

0 50 100 150 200
0.00

0.25

0.50

0.75

1.00
400G

(a) Active flows under WebSearch worklaod.

0 20 40 60
0.00

0.25

0.50

0.75

1.00

CD
F

L: load

40G

0.4 L
0.5 L
0.6 L

0.7 L
0.8 L
0.9 L

0 50 100
0.00

0.25

0.50

0.75

1.00
100G

0 50 100
0.00

0.25

0.50

0.75

1.00
400G

(b) Active flows under DataMining worklaod.

Fig. 7. The number of active flows at a port.

With dynamic queue assignment, each active flow is allo-
cated a separate queue. We can use the length of the queue as
the buffer usage of the flow, which can be directly obtained
from the interface provided by the programmable switch [40].
There is no need to frequently update the size for each
flow as packets enter and leave the switch, thereby reducing
computational overhead. The queue length of a flow solely
pertains to its own packets, and DiffECN determines whether
to mark the flow based on its queue length, independent of
others. Further details regarding the marking policy will be
discussed in the subsequent subsection.

2) Step2: Customize for bursty flows: Despite the signifi-
cant reduction in the burden on available queues by tracking
only active flows, the issue of insufficient queues could still
arise. Two main factors contribute to this problem. On one
hand, the datacenter contains various services. The number of
available queues on a switch port may be less than the physical
number, e.g., some queues are used for other purposes like
traffic isolation [41]. On the other hand, particularly in the
case of incast, the number of active flows is likely to surpass
32 (proved in our experiment § VI-C3), not supported by
Tofino1. This further increases the likelihood that the number
of available queues is less than the number of active flows.

To address the lack of available queues, we set aside a queue
that is granted high priority. When a new flow arrives and
all other queues are occupied, it will enter the high-priority
queue. Packets in this queue will be dequeued first, prioritized
over packets in other queues. However, the introduction of a
high-priority queue raises potential starvation of other queues
during bursts, thereby prolonging the completion time for the

6

remaining flows. We summarize two primary reasons why
starvation may occur, and present the corresponding solutions.

One is that the high-priority queue may be utilized
frequently if the number of active flows exceeds the
actual number of available queues. We analyze that, unlike
the traditional connection-preserving flow counting approach,
the probability of queue undersupply can be significantly
reduced by considering only active flows as described in the
previous subsection. We have tested the active flows in the core
switch port under 40G, 100G, and 400G links in the classic
spine-leaf architecture. Fig. 7(a) and 7(b) show the results
under WebSearch and DataMining workload, respectively. The
general trend is that the higher load corresponds to a higher
number of active flows. However, there are a few exceptions,
like 400G link in Fig. 7(b). In some scenarios, a high load
contains more large flows, while a low load contains more
small flows. Thus, it is possible that the number of active
flows is greater at a low load than that at a high load. It can
be seen that the number of active flows can exceed the number
of queues only under high link bandwidth and high load (like
above 80% load). This result is consistent with the results
shown by BFC [6]. In most cases, the switch has enough
queues for active flows, especially for Tofino2 (128 queues
in a port). Consequently, with the assistance of new hardware,
it is uncommon for the high-priority queue to remain occupied.

The second reason is that the size of the flow entering
the high-priority queue may be large, and the queue will
be occupied for a long time until the long flow finishes.
For this concern, instead of allowing flows to remain in the
queue, we treat the high-priority queue as a “temporary buffer
region”. Because active flows change dynamically, we monitor
the availability of queues whenever a packet belonging to
a flow in the high-priority queue enters the switch. When
an empty queue is available, the flow is reassigned to the
empty queue. So if the flows in the high-priority queue do
not continue to send packets, the rest queues have a chance
to be emptied. The packet-triggered probing method greatly
increases the likelihood that a new flow will enter an empty
queue and reduces the frequency of using the high-priority
queue.

Nevertheless, considering the worst case where no empty
queue is ever vacated in each turn, we cannot allow long flows
to continuously occupy the high-priority queue. We set a “pass
limit” for each active flow entering the high-priority queue,
i.e., each flow’s limit is independent. When the size of a flow
exceeds the limit, it will be moved out of the high-priority
queue and choose the shortest queue. We use an example to
illustrate it in Fig. 8. In this case, let’s assume that the “pass
limit” is set to 2 packets. As a result, for F2, it can be entirely
processed in the high-priority queue. For F1, after the first
two packets, it is moved out and the subsequent packets are
directed to the shortest queue. It is worth noting that when a
flow is moved out, it will affect the original flow in the new
queue regardless of which queue it enters. The effect is also
unavoidable in the per-queue and per-port schemes. But we
can minimize this effect by choosing the shortest queue for
the following two reasons. (1) It can prevent the length of

35pt

: R153 G0 B0

:

LT Medium

: Arial

32pt

: R153 G0 B0

黑体

22pt

) :18pt

黑色

:

LT Regular

: Arial

20pt

):18pt

黑色

细黑体

Map
Queue Unit mark!

no mark

P

new flow？

N Y

Assign
new

queue

Search
by

flowid

Mark
Decision
get per-flow

buffer

congested
flow or not？

differential
markingmarking threshold

F1

F2

F3

F4

limit=2
forbidden

high-priority queue

ch
o

o
se

 sh
o

rte
st

o
rd

in
a
ry q

u
e
u

e

… …

F1

F2

F3

F4

Fig. 8. An example for flows in the high-priority queue.

35pt

: R153 G0 B0

:

LT Medium

: Arial

32pt

: R153 G0 B0

黑体

22pt

) :18pt

黑色

:

LT Regular

: Arial

20pt

):18pt

黑色

细黑体

ordinary-queue

prio-queue

no-queue

Enter allocated queue

Probe any queue

evacuated

yes

no

Search for an

available queue
prio-queue

ordinary

prio

Probe any queue evacuated

flowmap

New flow? Search for an available queue

ordinary prio

Check queue type

? ?

Enter allocated queue

Probe any queue vacated

packets
Ordinary: normal queues
queue

ordinary prio

*prio: high-priority

Fig. 9. Queue assignment when enqueuing.

a reassigned queue from easily reaching the ECN marking
threshold due to the arrival of a new flow, which unfairly
affects the original flow. (2) A queue with a shorter length
is more likely to contain a short flow (proven in § IV-C2). So
it will complete quickly, allowing a new flow to get access to
an empty queue in the shortest possible time. By doing so, we
ensure that bursty short flow can finish quickly while avoiding
large flows from taking up resources for a long time. Fig. 19
shows that our scheme can achieve better results in large-scale
incast.

Therefore, the high-priority queue acts as a “temporary
buffer region” to ensure that bursty short flows can fin-
ish quickly. And the packet-triggered probing increases the
chances that a new flow will enter an empty queue when
the available queue is insufficient. If the probing phase is
skipped and the shortest queue is chosen directly, it will cause
multiple short flows to suffer from HOL problems and prolong
their completion time, which is unfriendly to datacenters that
emphasize tail latency.

3) Integrated enqueuing logic: Based on the above descrip-
tion, we take steps 1 and 2 to address the flow space scalability
issue. We only track active flows to shrink the flow space
significantly, and then reserve a high-priority queue to respond
to bursty flows. With controlled scheduling, the chances of
a bursty flow entering an empty queue are increased. Fig. 9
illustrates the queue allocation process.

First, the five-tuple of a packet is extracted and used as
the flow identification (FID). Then the allocated flowmap is
searched for a corresponding allocated queue. If such a queue
doesn’t exist, we check the available queues to decide whether
to allocate an empty queue or to be conceded to the high-
priority queue. Otherwise, the allocated queue is checked to
see whether it is the high-priority queue. If it is an ordinary
queue, the packet will directly enter it. If the allocated queue
is of high priority, the decision to enter the probing phase or
choose the shortest queue is based on the number of bytes
that the flow has passed through at this moment. During
the probing phase, if any empty queue is vacated, it will be

7

assigned to the flow. Once the assignment is made, the queue
length is increased by the packet size. In the extreme case
where all the memory in the switch is already occupied, the
incoming packet will simply be dropped. We use a bitmap
to record whether the queue is empty or not, and reset the
corresponding bit if the queue length is zero.

The total number of entries in our flowmap is 512 times the
number of available queues. It ensures that when the number
of flows is less than the number of available queues, the
probability of index hash conflicts does not exceed 0.2%. The
probability of conflict decreases as the size of the flowmap
increases. If the memory of the switch supports it, the conflict
will be easily avoided.

C. Selective Marking Unit

When it is time to drain out a packet, we determine whether
the flow is congested or not. If it is congested, DiffECN sets
the CE field of the packet to 11, otherwise no action is taken.
In this way, even in the case of congestion, DiffECN can
distinguish each flow individually and mark only congested
flows. Then the sender of a congested flow releases excess
bandwidth so that small coming flows can finish swiftly.
Therefore, how to distinguish between congested and non-
congested flows becomes a key issue for marking ECN.

1) How to identify congested flows: Intuitively, the most
reliable way to determine whether a flow is congested is by
measuring the speed of the flow and comparing it with the fair
share. However, in practice, precisely measuring the speed of
a flow at a switch is very challenging because the data plane
does not support division operations. While it is possible to
perform such measurements with the help of the control plane,
doing so in real-time is difficult. Additionally, the number of
flows is large and speed measurement for each flow would
consume a lot of storage resources, which is difficult to be
supported by the switch [25].

Consider that congested flows are those whose rates exceed
fair shares, which are higher than those of non-congested
flows. In our scheme, each flow enters a separate FIFO queue.
Thus high-demand flows naturally generate more packets in
the same amount of time, resulting in longer queues. This
phenomenon is demonstrated in the experiment § VI-C2. As
a result, under per-flow management, the more buffer a flow
occupies, the more likely it is to be a congested flow. This
assures us that it is reasonable to identify congested flows
by queue length. In particular, although we react quickly to
the congested flow, we avoid curbing it excessively. Given
the fairness of bandwidth, we no longer mark congested flows
when their rates successfully drop to fair shares or when other
flows reach the demand bandwidth.

Thus, it is crucial to set the threshold of buffer occupied as
a boundary to distinguish congested flows from non-congested
flows. The setting of the marking threshold will then be
examined in order to more precisely control high-demand
flows and safeguard low-rate flows.

2) How to set the marking threshold according to buffer oc-
cupancy: As mentioned earlier, before dequeuing each packet,
it must compare the queue length to the marking threshold.

However, calculating a threshold for each flow is impractical
because it requires complex computations and affects fairness
(which we will discuss later). For the sake of simplicity and
deployment, we decide to set the same threshold for each
queue of active flows and use this threshold to distinguish
congested flows from non-congested ones.

We observe that the traditional ECN marking schemes using
Eq. (1) has achieved good results [1], [29], making full use of
the link bandwidth while achieving low latency. Under the per-
flow marking idea, we treat the rate separately from the flow’s
perspective instead of the port and queue. Combined with the
scenario where N flows share a port at the same time, each
flow should receive a fair share of bandwidth C/N . Therefore,
we reconstruct the marking threshold as follows.

Kp = λ ∗RTT ∗ C/Nflow (2)

Where Nflow represents the number of active flows. As
the flow enters and leaves the switch, Nflow also changes
dynamically. C/Nflow ensures that each active flow has a fair
port bandwidth, so it represents the congestion boundary when
the bandwidth of each flow reaches a fair share.

Intuitively, we could set separate marking threshold for each
flow, based on different flow rates Ci instead of a unified C/N .
But it would compromise fairness. In this case, for flows with
smaller Ci, their marking thresholds would also be smaller.
Then when congestion occurs, they will suffer from marking
even if the queue length is low. Whereas for flows with larger
Ci, they will have more buffer space due to a larger marking
threshold. Thus the culprit high-speed flows are not slowed
down in time while innocent low-speed flows are victimized,
which is not what we hope to see. Instead, under Eq. (2), small
flows can be sped up in time, while flows with larger Ci will
be curbed first to free up more bandwidth. In this way, we
successfully relate the flow rate to the queue length to avoid
the difficulties of measuring the flow rate.

To further justify our judgment of congested flows based on
their buffer occupancy, we compare it with the ideal scheme. In
the ideal scheme, we know the fair share bandwidth of each
flow in advance and determine whether a flow is congested
by measuring the speed of the flow in the simulator. In our
scheme, only flows whose buffer occupancy exceeds Kp are
identified as congested flows. Fig. 10 demonstrates our results.
The experiments show that our FCT results are very close
to the ideal value. We also measure the key classification
assessment metrics, i.e., accuracy and recall [42], as follows:

Accuracy =
Correct predictions

All predictions
(3)

Recall =
True Positives

True Positives+ False Negatives
(4)

These metrics are above 90%, which proves that our identifi-
cation scheme is effective.

3) How to count the number of active flows: After deter-
mining the method for setting the marking threshold, we need
to consider how to count the number of active flows (Nflow),
a key parameter that affects performance. In our scheme,
DiffECN maintains a flow counter. Due to the dynamic nature

8
35pt

: R153 G0 B0

:

LT Medium

: Arial

32pt

: R153 G0 B0

黑体

22pt

) :18pt

黑色

:

LT Regular

: Arial

20pt

):18pt

黑色

细黑体

(a) Normalized AVG FCT

0.6 0.7 0.8 0.9
load

0

20

40

60

80

Pe
rc

en
ta

ge
/%

precision recall

(b) Precision and recall

Fig. 10. The comparison of DiffECN with the optimal solution.

35pt

: R153 G0 B0

:

LT Medium

: Arial

32pt

: R153 G0 B0

黑体

22pt

) :18pt

黑色

:

LT Regular

: Arial

20pt

):18pt

黑色

细黑体

𝑇𝑝𝑒𝑟𝑖𝑜𝑑

𝑇1 𝑇2

F1

F2

F3

T1: not contain F3
T2: delay updating F1

1 2 3 4

Five tuple

Diff period

Diff hash

1

2

3

4 Fi
ve

 t
u

p
le

D
if

f
p

e
ri

o
d

D
if

f
h

a
sh

𝑯𝒂𝒔𝒉 𝒇𝒊𝒗𝒆𝒕𝒖𝒑𝒍𝒆, 𝒑𝒆𝒓𝒊𝒐𝒅𝒊𝒅

𝒇𝒊𝒗𝒆𝒕𝒖𝒑𝒍𝒆 =< 𝒔𝒓𝒄𝒊𝒑, 𝒅𝒔𝒕𝒊𝒑,

𝒔𝒓𝒄𝒑𝒐𝒓𝒕, 𝒅𝒔𝒕𝒑𝒐𝒓𝒕, 𝒑𝒓𝒐𝒕𝒐𝒄𝒐𝒍 >

𝑯𝒂𝒔𝒉𝟏, 𝑯𝒂𝒔𝒉𝟐, 𝑯𝒂𝒔𝒉𝟑, 𝑯𝒂𝒔𝒉𝟒

𝒇𝒊𝒗𝒆𝒕𝒖𝒑𝒍𝒆 =< 𝒔𝒓𝒄𝒊𝒑, 𝒅𝒔𝒕𝒊𝒑, 𝒔𝒓𝒄𝒑𝒐𝒓𝒕, 𝒅𝒔𝒕𝒑𝒐𝒓𝒕, 𝒑𝒓𝒐𝒕 >

𝑯𝒂𝒔𝒉 𝒇𝒊𝒗𝒆𝒕𝒖𝒑𝒍𝒆, 𝒑𝒆𝒓𝒊𝒐𝒅𝒊𝒅

tuple period hash

(a) Flow Counter

35pt

: R153 G0 B0

:

LT Medium

: Arial

32pt

: R153 G0 B0

黑体

22pt

) :18pt

黑色

:

LT Regular

: Arial

20pt

):18pt

黑色

细黑体

𝑇𝑝𝑒𝑟𝑖𝑜𝑑

𝑇1 𝑇2

F1

F2

F3

T1: not contain F3
T2: delay updating F1

1 2 3 4

Five tuple

Diff period

Diff hash

1

2

3

4 Fi
ve

 t
u

p
le

D
if

f
p

e
ri

o
d

D
if

f
h

a
sh

𝑯𝒂𝒔𝒉 𝒇𝒊𝒗𝒆𝒕𝒖𝒑𝒍𝒆, 𝒑𝒆𝒓𝒊𝒐𝒅𝒊𝒅

𝒇𝒊𝒗𝒆𝒕𝒖𝒑𝒍𝒆 =< 𝒔𝒓𝒄𝒊𝒑, 𝒅𝒔𝒕𝒊𝒑,

𝒔𝒓𝒄𝒑𝒐𝒓𝒕, 𝒅𝒔𝒕𝒑𝒐𝒓𝒕, 𝒑𝒓𝒐𝒕𝒐𝒄𝒐𝒍 >

𝑯𝒂𝒔𝒉𝟏, 𝑯𝒂𝒔𝒉𝟐, 𝑯𝒂𝒔𝒉𝟑, 𝑯𝒂𝒔𝒉𝟒

𝒇𝒊𝒗𝒆𝒕𝒖𝒑𝒍𝒆 =< 𝒔𝒓𝒄𝒊𝒑, 𝒅𝒔𝒕𝒊𝒑, 𝒔𝒓𝒄𝒑𝒐𝒓𝒕, 𝒅𝒔𝒕𝒑𝒐𝒓𝒕, 𝒑𝒓𝒐𝒕 >

𝑯𝒂𝒔𝒉 𝒇𝒊𝒗𝒆𝒕𝒖𝒑𝒍𝒆, 𝒑𝒆𝒓𝒊𝒐𝒅𝒊𝒅

tuple period hash

(b) Different period

Fig. 11. An example of how Flow Count works.

of when a flow comes and leaves, we need to count the number
of flows in real-time. So we need to recount and update it
every period. We define the beginning of a flow as a five-tuple
packet that first appears in the switch within each timeout-
sized period.

However, a problem arises when a flow spans more than
one period. How do we distinguish the same flow in different
periods? To this end, we use the id of the period and the five-
tuple of packets together as the hash key. For each turn, the
period id is incremented by 1, thus distinguishing the same
flow for different periods. Fig. 11(a) illustrates this process.
This new arrival counting method helps to avoid bias in case
of the beginning or the end of a flow. It determines whether a
flow is new by checking the bitmap maintained by each port.
If it is, the flow counter is added by 1. For each period, the
bitmap and Nflow are reset and recirculated. We count Nflow

by considering the flows of the previous period (denoted by
N last

flow) and the Nnow
flow measured in the current period. Then

it yields Nflow = max(N last
flow, N

now
flow). Because the flow

counter always starts from 0, we cannot take Nnow
flow as the

current Nflow.
Furthermore, we also need to consider the upper limit of the

number of queues. Under few cases link heavy incast or many
active large flows, the number of active flows may exceed
the total number of queues (Qnum). In these cases, we set
Nflow to Qnum. DiffECN will fall back to a modified per-
queue without side effects. We have executed the experiments
in a scenario with almost all small flows, where the number
of active flows is above the number of queues. The topology
settings are consistent with § VI-C5. We set the load of the
bottleneck link to 90%. Fig. 12 shows when the number of
active flows exceeds the number of queues, DiffECN falls back
to a modified per-queue scheme (MQ-ECN). When large flows
exist, DiffECN can maintain better performance for small
flows because they can use the high-priority queue or choose
the shortest queue when the limit is exceeded. When almost
all flows are small, DiffECN behaves similarly to per-queue

90% 95% 99%
ratio of small flows (<100KB)

0.0

0.1

0.2

0.3

0.4

AV
G

FC
T/

m
s

DiffECN
MQ-ECN

(a) AVG FCT

90% 95% 99%
ratio of small flows (<100KB)

0.0

0.2

0.4

0.6

0.8

1.0

99
th

 F
CT

/m
s

(b) 99th FCT

Fig. 12. DiffECN under most small flows

because there are no more large flows to be sacrificed at this
point.

V. IMPLEMENTATION

We have implemented DiffECN in Barefoot Tofino1 pro-
grammable switch, including 12 MAU stages, 120Mbit SRAM
and 6.2Mbit TCAM per pipeline, 32 queues per egress port,
supporting stateful packet manipulation. Ingress/egress ports
are statically assigned to pipelines. Our solution can be fully
implemented in the data plane without the involvement of the
control plane. The development effort on the switch requires
about 900 lines of P416 code, and a total of 9 stages are
consumed in the switch. Algorithm 1 shows the logic of our
data-plane processing. We present two core implementations,
namely Queue Assignment and Flow Count.

Algorithm 1 Data Plane Implementation.

1: Ingress logic (Queue Assignment):
2: FID ← ExtractF iveTuple(packet)
3: Pindex ← FID[IndexSize : 0]
4: if flowmap[Pindex] not None then
5: inq = flowmap[Pindex]
6: if inq is PriorityQ then
7: switch PassedSize do▷ The number of bytes this flow

has passed in the high-priority queue
8: case ≤ limit
9: ProbeEmptyQ(queues)

10: case > limit
11: ReassignShortestQ(lengths)

12: end if
13: else
14: key ← CombineLength(queues)
15: emptyQ← TernaryMatchemptyQ(key) ▷ Simulate

looping empty queue by ternary match
16: if emptyQ is None then
17: flowmap[Pindex] = PriorityQ
18: inq ← PriorityQ
19: else
20: flowmap[Pindex] = emptyQ
21: inq ← emptyQ
22: end if
23: end if
24: Send the packet to traffic manager.
25: Egress logic (Flow Count):
26: if Tnow − Tstart > Tperiod then

9

27: UpdateSeqinterval(+1) ▷ Increase the interval sequence to
distinguish periods

28: UpdateN last
flow

(Nnow
flow)

29: ResetNnow
flow

(0) ▷ Reset the current period flow number

30: ResetTstart
(Timenow)

31: else
32: Hashnew ← CaculateHash(FID, Seqinterval)
33: Pindex ← Hashnew[IndexSize : 0]
34: Hashold ← Read&UpdateBitmap(Pindex, Hashnew)
35: if Hashnew! = Hashold then ▷ Find a new flow by

comparing current and last hash values
36: Nnow

flow ← Nnow
flow + 1

37: end if
38: end if
39: Nflow ← max(N last

flow, N
now
last)

40: Markthreshold ←Match&Read(Nflow) ▷ Different
number of flows corresponds to different marking threshold

41: if Queuelen > Markthreshold then
42: MarkECN(packet)
43: end if
44: Send out the packet.

Queue Assignment: When a packet arrives, DiffECN needs
to know if it belongs to a new flow. We maintain a flowmap
for flows. It records the queue identification assigned to each
flow, indexed by the five-tuple hash of the flow. Specially, we
take the first IndexSize bits of the hash as the index. For
an arriving packet, we extract its five tuple and then get the
queue identification based on the hash index.

If the queue id can not be found in the flowmap, then it
belongs to a new flow and needs to allocate an empty queue
for it (lines 14-21). Since P4 does not support loop operation,
we cannot traverse all queues. Fortunately, ternary matching
can simulate the process of looping by matching the entries in
order, with the more preceding entries having higher priority.
Specifically, we input the current lengths of all queues and
combine them in order as keys. DiffECN then looks for an
empty queue starting from queue 0 until 31 (the last queue
id). Once an empty queue emptyQ is found, it exits the match
process (the priority of current matching entry is higher than
the rest) and updates the flowmap. That is, ternary matching
always finds the empty queue with the smallest sequence
number.

For flows that have been assigned the high-priority queue,
we need to enter the probing phase. The packet-triggered
probing detects if there is an empty queue. If an empty queue
is still not found before the size this flow has passed exceeds
the “pass limit”, we reassign it with the shortest queue (lines
4-11).

It is important to note that queue assignment needs to be
finished at ingress because enqueuing is done in the traffic
manager and the queue identifier needs to be specified before.
We implement it by using recirculate now. Although the
operation causes overhead to the data plane, it can be reduced
by periodic updates. Moreover, Tofino2 has already provided a
built-in functionality to avoid the overhead. We have discussed
these in § VII.
Flow Count: DiffECN needs to know how many active flows

are passing through the switch’s port at any time. As described
in previous section, the switch only needs a bitmap and a
counter to achieve this functionality. However, in a pipeline, a
stage can only operate on one register, not an array of bitmap
registers. To solve this problem, DiffECN uses a time period
sequence counter and a write-after hash operation to calculate
the number of active flows. The lines 26-39 of the algorithm
show this process, which is implemented in egress.

For an arrived packet, it firstly check whether the current
time Tnow exceeds the last update time Tstart more than
Tperiod. We define exceeding this period as a timeout for
ease of presentation. If timeout occurs, we need to reset the
value of the register. For example, the Seqinterval for counting
time period is increased by 1 to distinguish between different
periods. The current Nnow

flow is assigned to the number of flows
counted in the last period (i.e., N last

flow). And Nnow
flow is reset to

0. Finally, Tstart is updated to the current time Tnow, which
is used as the start time of the new statistical interval.

If no timeout happens, it read the current period sequence
counter. Do hash operation together with the FID of packets
and Seqinterval to get Hashnew, as the index Pindex of the
lookup storage array. The most critical step is that we read the
hash Hashold at the Pindex position, and update the current
register to Hashnew. Then compare whether Hashnew and
Hashold are equal. If they are not equal, then a new flow is
detected and the counter Nnow

flow (lines 35-36) is updated. The
Seqinterval is used for hash of a packet because we want to
treat a flow in different periods as a different flow, to count the
number of active flows in real-time. In our implementation, the
size of the bitmap array used to store the hash values is 214

uints. The number of active flows is finite, so the probability
of different flows’ hashing conflict is low and does not affect
performance much.

Finally, P4 does not support multiplication and division
operations. So we need to calculate the dynamic thresholds
Kp in advance, which is affected by Nflow, and store them in
the table. Before the packet is dequeued, the length Queuelen
of the corresponding queue is read. Then the comparative
relationship between Queuelen and Kp determines whether
it needs to be marked (lines 40-43).
Implementation Experience: In one packet processing
pipeline, multiple tables can be stored in a stage, but only one
table can be modified (i.e., a register can only be modified
once). We can modify registers located in several different
stages. Therefore, tables that need to be modified in the same
pipeline must be placed in different stages (corresponding
to multiple registers). For example, in our implementation,
flowmap, update now flow count, window seq, flowhash, etc.
are placed in different stages, while tables that are not in the
once pipeline, like read window seq and update window seq,
can be placed in the same stage.

VI. EVALUATION

In this section, we perform testbed experiments and ns-3
simulations to answer the following key questions:

• How does DiffECN perform in practice?
• Does DiffECN scale to large datacenter topologies?

10

0.2 0.4 0.6 0.8
Load

0.8
1.0
1.2
1.4
1.6
1.8

No
rm

al
ize

d
FC

T DiffECN
ECN
TCN

(a) Overall AVG

0.2 0.4 0.6 0.8
Load

0.8
1.0
1.2
1.4
1.6
1.8

No
rm

al
ize

d
FC

T DiffECN
ECN
TCN

(b) Large Flow AVG (>10M)

0.2 0.4 0.6 0.8
Load

0.8
1.0
1.2
1.4
1.6
1.8

No
rm

al
ize

d
FC

T DiffECN
ECN
TCN

(c) Small Flow AVG (<100K)

0.2 0.4 0.6 0.8
Load

0.8

1.0

1.2

1.4

1.6

1.8

No
rm

al
ize

d
FC

T

DiffECN
ECN
TCN

(d) Small Flow 99th (<100K)

Fig. 13. [Testbed] FCT statistics with WebSearch workload.

0 1 2 3
Small flow FCT/ms

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 0.8RTT

1.0RTT
1.5RTT
2.0RTT
2.5RTT

(a) CDF of FCT.

0.6 0.7 0.8 0.9
load

5

6

7

8

Th
ro

ug
hp

ut
/G

bp
s 0.8RTT

1.0RTT
1.5RRT
2.0RTT
2.5RTT

(b) Throughput under high load

Fig. 14. [Testbed] DiffECN performance under different Tperiod.

• Why can DiffECN guarantee fairness among different
flows?

• How tolerant is DiffECN to bursty traffic?

A. Methodology

Schemes Compared. We compare DiffECN with the follow-
ing five schemes: (a) ECN [testbed, simulation]: We use the
typical per-port marking according to Eq. (1). (b) MQ-ECN
[simulation]: MQ-ECN marks flows on a per-queue basis, and
we set all queues with the same weight. (c) TCN [testbed,
simulation]: By detecting packet sojourn time Tsojourn in
the switch, TCN compares it with λ ∗ RTT to determine
congestion, referring to [17]. (d) ECN# [simulation]: ECN#
[18] marks packets based on both instantaneous and persistent
congestion. (e) CoDel [simulation]: CoDel is also a per-queue
scheme and tracks minimal queueing over an interval to mark
packets [20].
Benchmark Traffic. We generate traffic based on two real
workloads in production datacenters: WebSearch [1] and
DataMining [43]. According to [19], both workloads are
heavy-tailed. For example, in webSearch, 70% of the flows
are less than 1MB and 97% are less than 10MB. While in
DataMining, 91% of the flows are less than 1MB and 95% are
less than 10MB. In the testbed experiment, we use an open-
source traffic generator [44] to generate benchmark traffic.
Referring to the common practice in academia [18], [45],
[46], we also generate traffic based on Poisson assumptions
to capture the statistical temporal traffic patterns (burstiness
on different time scales). And we use the same scheme to
generate flows in our simulation experiments.
Network Load. Under all-to-one communication mode, the
network load refers to the load of the bottleneck link between
the switch and the receiver. Under all-to-all, it refers to the

load on the links between the switches adjacent to servers
and the upper layer switches (e.g., spine-leaf links). Most
datacenter networks operate at loads less than 50% [47]
and the instantaneous load becomes high when bursty traffic
comes. So consistent with classic practice [48], [13], we
explore DiffECN’s performance under different loads (from
10% to 90%) separately.
Metric. We use flow completion time (FCT) as the main
metric. In addition to the overall average FCT, we also
decompose the FCT results across different flow sizes (small
(<100K) and large (>10M) flows). To evaluate the tail latency,
we also show the 99th percentile FCT for small flows. All
results are normalized according to the results achieved by
DiffECN.

B. Testbed Experiments

Testbed setup. We build a small-scale testbed with 5 servers
connected to a Barefoot Tofino1 switch with DiffECN’s im-
plementation. Each egress port has 32 queues. There are
four senders and one receiver. Each sender starts 10 services,
simulating a 40-to-1 request totally. Each server is with a 4-
core Intel Xeon E5620 2.4GHz CPU, 16G memory, and a
160GB hard disk. All servers are running Linux kernel 4.15.0
and DCTCP is enabled in the host. The base RTT is 0.19ms
and all links are 10Gbps.

1) Realistic Workload: We first verify the functionality of
DiffECN in a real traffic scenario. For generality, we test the
FCT under different network load from 10% to 90%. The
threshold of ECN is set as 510 cells according to Eq. (1). In
Tofino switches, queue lengths are in units of cells, where a
cell represents 80 bytes [49]. The Tsojourn of TCN is set to
0.03ms. We calculated all dynamic thresholds for DiffECN in
advance according to Eq. (2) and put them in a match table.
For example, the threshold is set as 510 cells when there is one
active flow and 255 cells under two. We generate traffic based
on the real workload WebSearch. Figure 13 shows the FCT
results. They are a breakdown in terms of overall FCT, FCT of
large flows (>10MB) and FCT of small flows (<100KB). All
results have been normalized to FCT achieved by DiffECN.
Small flows: The network operators are most concerned about
the performance of small flows. From subfigures (c) and (d), it
is easy to see that when the network load is low, the gap among
these schemes is not big. When the load becomes higher,
DiffECN’s advantage starts to emerge. And the higher the load,
the better results achieved by DiffECN. Specifically, compared

11

0.2 0.4 0.6 0.8
Load

0.8
1.0
1.2
1.4
1.6
1.8

No
rm

al
ize

d
FC

T DiffECN
ECN
MQ-ECN
TCN
ECN#
CoDel

(a) Overall AVG

0.2 0.4 0.6 0.8
Load

0.8
1.0
1.2
1.4
1.6
1.8

No
rm

al
ize

d
FC

T DiffECN
ECN
MQ-ECN
TCN
ECN#
CoDel

(b) Large Flow AVG (>10M)

0.2 0.4 0.6 0.8
Load

0.8
1.0
1.2
1.4
1.6
1.8

No
rm

al
ize

d
FC

T DiffECN
ECN
MQ-ECN
TCN
ECN#
CoDel

(c) Small Flow AVG (<100K)

0.2 0.4 0.6 0.8
Load

0.8
1.0
1.2
1.4
1.6
1.8

No
rm

al
ize

d
FC

T DiffECN
ECN
MQ-ECN
TCN
ECN#
CoDel

(d) Small Flow 99th (<100K)

Fig. 15. [Simulation] FCT statistics with WebSearch workload.

0.2 0.4 0.6 0.8
Load

0.8
1.0
1.2
1.4
1.6
1.8

No
rm

al
ize

d
FC

T DiffECN
ECN
MQ-ECN
TCN
ECN#
CoDel

(a) Overall AVG

0.2 0.4 0.6 0.8
Load

0.8
1.0
1.2
1.4
1.6
1.8

No
rm

al
ize

d
FC

T DiffECN
ECN
MQ-ECN
TCN
ECN#
CoDel

(b) Large Flow AVG (>10M)

0.2 0.4 0.6 0.8
Load

0.8
1.0
1.2
1.4
1.6
1.8

No
rm

al
ize

d
FC

T DiffECN
ECN
MQ-ECN
TCN
ECN#
CoDel

(c) Small Flow AVG (<100K)

0.2 0.4 0.6 0.8
Load

0.8
1.0
1.2
1.4
1.6
1.8

No
rm

al
ize

d
FC

T DiffECN
ECN
MQ-ECN
TCN
ECN#
CoDel

(d) Small Flow 99th (<100K)

Fig. 16. [Simulation] FCT statistics with DataMining workload.

to current practice (i.e., ECN), DiffECN can achieve up to
32.5% lower average FCT at 90% load. In the 99th percentile
FCT, DiffECN can achieve up to 40.1% lower FCT. Compared
to TCN, DiffECN maintains a similar advantage over it.

The reason is that when the load is high, ECN and TCN
do not differentiate flows and will mark ECN for small ones
as well, preventing them from getting enough bandwidth.
DiffECN, on the other hand, will accurately curb high-speed
flows and not mark small ones, providing them with the
deserved bandwidth. Therefore small flows can finish earlier
compared to the other schemes. And the higher the load, the
more obvious it is that traditional schemes hurt small flows.
Because they can even cause packet loss, which can seriously
affect performance.
Large flows and overall: From subfigure (b), we see that
DiffECN achieves similar results as ECN and TCN. There is
only a small difference under high load. For example, ECN
achieves up to 1.4% lower FCT and TCN achieves up to 2.9%
lower FCT at 90% load. Nevertheless, these side effects are
negligible. This is because DiffECN curbs the bandwidth of
large flows in order not to impair small flows. However, the
duration of the congestion is short and does not seriously affect
the throughput of large flows. In general, DiffECN achieves
good overall performance among the three schemes (subfigure
(a)). It further demonstrates that DiffECN can fully utilize link
capacity and maintain the throughput of all flows.

2) Reasonable period to count active flows: In the testbed,
we count and update the number of active flows at each period,
so the setting of Tperiod is crucial for performance. First, it
must be greater than a round-trip time, otherwise, the estimate
of Nflow will be less than the ground truth, because all flows
need at least one RTT passing through the switch. However, it
should not be too large either. If the number of newly arriving
flows increases, the update of Nflow will be delayed. From

65 66 67 68 69 70
Time/ms

0

5

10

15

20

Qu
eu

e
Le

ng
th

/p
ac

ke
ts F1

F2
F3
F4

(a) Queue length in preliminary
test of § III-A.

20 60 100 140
Time/ms

0

5

10

15

Th
ro

ug
hp

ut
/G

bp
s

F1 F2 F3 F4

(b) Fairness among all flows.

Fig. 17. [Simulation] (a) Flows with higher rates have longer queues. (b)
DiffECN provides fair share of bandwidth for each flow.

Fig. 11(b), T1 is smaller than one RTT while T2 is too large.
It cannot count F3 under T1 because F3 arrives at the switch
later. For T2, although it counts all flows accurately, it does not
update in time when F1 ends. Through extensive experiments,
it shows that setting Tperiod to 1.5RTT is reasonable. We
have tested the performance of DiffECN by setting Tperiod

to 0.8RTT, RTT, 1.5RTT, 2.0RTT, 2.5RTT respectively. The
parameter settings and traffic patterns are all similar to the
previous subsection.

Figure 14(a) shows the distribution of small flows’ FCT.
1.5RTT for Tperiod achieves the best results, with 97% of
small flows completing within 1ms. 2.0RTT and 2.5RTT also
perform well, with little difference from 1.5RTT. But 0.8RTT
and 1.0RTT perform poorly. This is due to the fact that when
Tperiod is greater than one RTT, it ensures that all active flows
pass through the switch. Conversely, the estimation of Nflow

is small and the threshold Kp is large, resulting in a long
queue, which has a negative impact on small flows.

Figure 14(b) shows the throughput gains for various Tperiod

settings. When the network load is high, 1.5RTT can also
maintain high link utilization. 2.0RTT and 2.5RTT are slightly

12

worse in both FCT and throughput because updating Nflow

is delayed. It can lead to the estimated Nflow being larger
or smaller than the ground truth. With the above analysis, we
believe that setting Tperiod to 1.5RTT is a good choice for
practical production. Operators can customize it by applying
a similar analysis on their networks’ traffic traces.

C. Simulation Experiments
In this section, we use ns-3 simulator to evaluate the

performance of DiffECN in multi-hop datacenter networks.
DCTCP is still adopted as the default transport protocol, unless
specified. Unlike the testbed, we can accurately count active
flows in real-time, eliminating the bias on estimating Nflow.
Also, we will answer why DiffECN can guarantee fairness
by fine-grainedly analyzing the buffer occupied by flows with
different demands. We further explore the performance of
DiffECN under bursty flows. Finally, DiffECN is also proven
to cooperate well with DCQCN in lossless fabric.

1) All-to-all communication: To complement the small-
scale testbed, we evaluate DiffECN in a production datacenter
with the multi-hop spine-leaf topology.
Setup: We simulate a 128-host leaf-spine topology with 8
leaf switches and 8 spine switches. Each leaf switch has 16
40Gbps links to hosts and 8 40Gbps links to spine switches.
The latency of the link is 15us. We use ECMP for load balance.
K in ECN is set to 65KB and Tsojourn in TCN is set to 11us.
For CoDel, we set the interval to 150us and the target to 10us.
These settings are suggested in Eq. (1) and literature [18].
Results: Figure 15 shows the FCT results across different flow
sizes under WebSearch. For the overall FCT, DiffECN slightly
outperforms another five schemes, which proves that it can
maintain good throughput in production. For the small flows’
average FCT, DiffECN achieves up to 16.1% lower FCT than
ECN and up to 25.9% lower FCT than MQ-ECN. As expected,
DiffECN achieves larger improvements at the 99th percentile:
the 99th FCT of DiffECN (2.13ms) has a reduction ranging
from 26.0% (ECN#, 2.88ms) to 39.8% (CoDel, 3.54ms) at
90% load. For larger flows, this has a negligible increase in
the FCT of DiffECN (128.8ms), ranging from 1.5% (MQ-
ECN, 126.9ms) to 4.9% (ECN, 122.5ms) at 90% load. Under
the advantage of significant gains obtained for small flows,
the impact on large flows is not notable. This demonstrates
that DiffECN can outperform other marking algorithms in
real workload scenarios. The result is also consistent with the
testbed.

We also test DiffECN’s performance under DataMining
workload. From the Figure 16, DiffECN maintains a similar
advantage. The difference is that the performance superiorities
of small flows is slightly degraded under high load compared
with WebSearch’s. This is due to the fact that the number
of long flows in DataMining is quite small, while long flows
are the congested ones that really need to be limited. So some
small flows with larger size are marked ECN. From the average
FCT in subfigure 16(a), DiffECN can still maintain a stable
throughput. From the results under the above two workloads,
DiffECN is able to achieve good performance in production
datacenters, where the majority of flows are short flows but
most of the bytes come from large flows [50].

2) Fairness: In § IV-C, we distinguish between congested
and non-congested flows based on queue length. This is based
on the premise that congested flows tend to have higher rates
and longer queues. We have confirmed it in § IV-C1. To further
illustrate this basis, we measure the queue length of each flow
using DiffECN during the period when congestion occurs in
the preliminary test in § III-A. Fig. 17(a) illustrates this result.
As we expected, when the four flows coexist and reach the
stable state, the larger flows F1 and F2 , with 17Gbps and
13Gbps, have longer queue length. While F3 and F4 ’s queues
are shorter because they are small flows with lower rates, i.e.,
5Gbps. Thus, it is not hard to find that the queue length of
every flow is proportional to its rate.

With the same experimental setup, we further explore
whether the bandwidth can be fairly distributed when flows
with the same demand compete for the link. We set the
demands of F1-F3 to be 15Gbps and F4 to be 5Gbps. Figure
17(b) shows that F1-F3 can get the same bandwidth before
the arrival of F4. When F4 arrives, it can still get its fair share
despite its less demand. This proves that DiffECN can provide
fair share of bandwidth for flows regardless of their demand
rates. Moreover, they can converge quickly whenever a new
flow joins or leaves.

3) Incast Absorption: In the presence of an incast, the
number of active flows passing through the switch link is
likely to exceed the number of queues available on the port. To
demonstrate the performance of DiffECN under bursty traffic,
we add an additional 5% incast and create 60% network load
in all-to-all communication. The incast level is 16-to-1 at each
pod3 where one of hosts in each pod suffers an incast. Hence
for a leaf (ToR) switch within one pod, there will be at most
240 (16*15) connections created by incast, assuming they all
arrive at the same time.

Figure 18 shows the distribution of active flows for a port in
a leaf switch with and without incast. DataMining workload is
used here. Under no incast, there are no more than 20 active
flows for 90% of the time. Only in a few cases does the number
of active flows exceed 32, supported by Tofino. When a large-
scale incast comes, the number of active flows is increased.
But it hardly exceeds 128, supported by Tofino2. Therefore, in
practical production, we have the ability to provide a separate
queue for each active flow.

In fact, even if the number of active flows exceeds the
number of available queues due to bursts, DiffECN can still
achieve good results. In our experiments, each switch port is
assigned 32 queues. No separate queue can be provided for
each flow in this case. Figure 19 shows FCT on different flow
sizes. From the results, we can see that the 99th percentile
FCT and the average FCT of DiffECN are the lowest. For large
flows (>10MB), DiffECN can achieve similar performance to
other schemes. This is mainly due to that when incast arrives,
Nflow becomes large. According to Eq. (2), the marking
threshold Kp decreases rapidly. In turn, it quickly curbs large
flows passing through switches and keeps all queues’ length

3Datacenters build groups of servers in unit of pod. One pod has 16 servers
in our all-to-all communication mode.

13

0 20 40 60 80 100 120 140
of active flows

0.0

0.5

1.0
CD

F

w/o incast with incast

Fig. 18. [Simulation] The number of active flows.

10K 1M
Flow Size (Bytes)

0.8

0.9

1.0

1.1

1.2

99
th

 N
or

m
al

ize
d

FC
T

DiffECN
ECN
MQ-ECN

TCN
ECN#
CoDel

(a) 99th Normalized FCT

1K 10K 100K 1M 10M
Flow Size (Bytes)

0.8

0.9

1.0

1.1

1.2

Av
g

No
rm

al
ize

d
FC

T
DiffECN
ECN
MQ-ECN

TCN
ECN#
CoDel

(b) Avg Normalized FCT

Fig. 19. [Simulation] DiffECN’s incast tolerance.

low. Then even if a small flow randomly enters the queue
where a large flow locates, there will be no HOL problem.

Through the above experiments and analysis, we learn that
in real production, the switch has the ability to provide a
separate queue for each active flow with the presence of incast.
Even if there are not enough available queues to serve bursty
traffic, DiffECN can still achieve good results by keeping the
queue low.

0.3
0
2
4
6

99
th

 F
CT

/m
s

0.5
load

0

5

10

(Q: queue)8Q 12Q 16Q 20Q 24Q 28Q 32Q

0.7
0
5

10
15

0.9
0

10

20

30

Fig. 20. [Simulation] Available Queues.

0.3
0

2

4

6

99
th

 F
CT

/m
s

0.5
load

0

5

10

(M: MTU)2M 5M 8M 10M 12M 15M 18M

0.7
0

5

10

15

0.9
0

10

20

Fig. 21. [Simulation] “Pass limit” in the high-priority queue.

4) Impact of available queues: In the previous experiments,
we use 32 physical egress queues, supported by Tofino1.
In production datacenters, it is possible that operators may
reserve some queues for other services, resulting in less than
32 queues available. For example, some queues are used for
traffic isolation. To explore the dependence of DiffECN on
available queues, we change the number of egress queues
in switches, from 8 to 32. Other experimental settings are
consistent with all-to-all communication.

Fig. 20 shows that the more queues, the lower 99th per-
centile FCT of small flows is. More queues increase the
probability of controlling each flow individually. Note that

under the low load (like 0.3), the number of queues is sufficient
to support active flows. Hence increasing more queues will
not bring more gains. However, we can also see that after the
number of queues exceeds 20, DiffECN can already achieve
good performance, with only a slight difference from 32
queues’. This coincides with what is demonstrated in Figure
18, where the number of active flows in the switch port at
the same moment is below 20 in most cases. We draw a
conclusion that to achieve good performance, it is unnecessary
for all queues to serve DiffECN, where additional queues can
be reserved for other services.

As depicted in § IV-B, DiffECN sets a limit for each flow
in the high-priority. For an active flow, when there is still no
empty queue after the “probing” phase, it will be downgraded
to the shortest queue due to the limit. Although it has been
analyzed earlier that this situation rarely occurs, we still
choose a better limit through experiments for robustness. We
generate flows of various sizes based on WebSearch workload.
Figure 21 illustrates the impact of the flow size limit. The
results show that setting this limit to 10 MTU is a good choice.
Small flows tend to enter non-empty queues when the number
of bytes allowed per flow is small. So they can not finish
quickly. If the value is large, the high-priority queue becomes
busy. It will cause the rest queues to starve while large flows
will take up more resources on the high-priority queue. In
extreme workload scenarios, we can reduce the amount of
time a flow spends in the high-priority queue and reduce the
impact on the rest of the queue by controlling the size of the
limit. So an appropriate limit in the high-priority queue can
guarantee good performance for small flows, preventing the
rest of the queue from starving.

5) DCQCN with DiffECN: In addition to DCTCP, DCQCN
is also a commonly used congestion control algorithm based
on ECN marking. We conduct case studies to show how
DiffECN incorporates it. We construct a 40-to-1 topology with
40Gbps links, consisting of 40 senders and one receiver. The
link between the switch and the receiver is the bottleneck with
60% load. The size of both large and small flows are generated
based on WebSearch workload. In the switch, we adopt three
marking policies: DiffECN, ECN, and MQ-ECN, respectively.
The parameter settings are kept the same principle as the
previous experiments. We measure the FCT of small flows
(<100KB), bottleneck link utilization and PFC pause rate.

Figure 22(a) shows the FCT results of small flows, where
DiffECN provides faster completion time. With DiffECN, all
small flows are mostly completed within 1ms. Yet ECN and
MQ-ECN have obvious long-tail effects, they provides enough
buffer space for each flow, resulting in a long queue. Moreover,
DiffECN provides priority service for small flows without
assigned empty queues, which can cope with bursty traffic
and trigger fewer pauses in PFC. From Figure 22(b), PFC
pause rate in DiffECN is 9.55Mbps, lower than another two
policies’. At the same time, triggering more PFC also prolongs
the flow completion time, consistent with the results in the
left subfigure. Under less PFC, DiffECN achieves higher link
utilization because upstream senders would not be frequently
paused. With the above analysis, DiffECN can still work well
with the widely deployed DCQCN even in lossless networks.

14

0.0 0.5 1.0 1.5 2.0
Small flow FCT/ms

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

DiffECN
ECN
MQ-ECN

(a) CDF of FCT

DiffECN MQ-ECN ECN
0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
iliz

at
io

n 0.87 0.83 0.79
Utilization

0

5

10

15

20

25

PF
C

Pa
us

e
Ra

te
/M

bp
s

9.55
11.53

23.08PFC

(b) Link Utilization and PFC PAUSE

Fig. 22. [Simulation] DCQCN with DiffECN.

DiffECN BFC Floodgate
0

5

10

15

20

FC
T/
m
s

Mean

(a) Overall FCT

0 250 500 750 1000 1250 1500
Port Length (KB)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

DiffECN
BFC
Floodgate

(b) CDF of queue length

Fig. 23. [Simulation] Comparison with BFC and Floodgate.

With the above setup, we compare the state-of-art BFC
[6] and Floodgate [51], where Floodgate also uses DCQCN
as the host’s control. Fig. 23(a) shows that DiffECN can
provide lower average FCT (2.15ms), which is 33.6% lower
than BFC (3.24ms) and 32.2% lower than Floodgate (3.17ms).
BFC has the lowest tail latency and Floodgate has the largest
tail latency. We carefully analyze the port buffer occupancy
under the three schemes in Fig. 23(b). DiffECN provides a
lower average port length and Floodgate has a longer length.
This is because BFC sends PFC at per-queue granularity.
Although it keeps the 99th length low, small flows are blocked
by large flows, resulting in a higher overall average latency.
Whereas Floodgate is based per-dst flow control, the port of
the bottleneck link will have packet accumulation due to the
large initial sending window. DiffECN minimizes harming
small flows by marking large flows first. When the number
of queues is not enough, it guarantees that the small flows
finish quickly through the high-priority queue. Ultimately,
DiffECN significantly improves the performance of small
flows and the overall performance with slight harm on large
flows.

6) In-depth comparison with TCN: In the original TCN
[17], which is a port-level marking scheme, there is still the
problem of large and small flows sharing the same congestion
state. In order to extend the TCN, we explore its effect based
on per-flow. Namely, whether each flow is marked or not does
not depend on the queue length, but on the sojourn time of
its packets in the switch. When sojourn time is greater than
λ ∗RTT , we decide to mark the packet. We refer to the per-
flow based TCN scheme as PFTCN for short. We add a 20-to-1
burst on the basis of the experimental setup of § VI-C5. We
measure the FCT, packet loss, and buffer occupancy.

Fig. 24(a) illustrates the average and 99th percentile FCT
for small flows under the three schemes. DiffECNmaintains
the lowest latency in both. Where the 99th percentile delay is
28.9% and 40.1% lower than PFTCN and TCN, respectively.

DiffECN PFTCN TCN
0.0

0.5

1.0

1.5

2.0

FC
T

(m
s)

99th
avg

(a) Small flow FCT

ratio1
lower is better

ratio2
higher is better

0.0

0.5

1.0

1.5

2.0

2.5

3.0

flo
ws

 a
ffe

ct
ed

 b
y

dr
op

 (%
)

0.0

0.5

1.0

1.5

2.0

sm
al

l /
 la

rg
e

DiffECN
PFTCN
TCN

(b) Ratios of affected flows and buffer
occupation

Fig. 24. [Simulation] Comparison with TCN.

Also, we see that PFTCN can improve the original TCN
scheme by providing lower latency. We deeply analyze the
reasons behind the above results in Fig. 24(b). Fig. 24(b)
shows two ratios, where ratio1 refers to the percentage of
flows affected by packet loss, and ratio2 refers to the ratio of
the buffer occupancy of small flows to the buffer occupancy
of large flows during burst. We find that PFTCN is more
affected by packet loss, which is mainly due to the inability
of PFTCN to curb congested flows in time. Although per-
flow isolates the congestion state, sojourn time can only be
detected when the packet dequeues. Take F2 in Fig. 5 as an
example, F2 has already occupied more buffer at this point,
but it is only marked as congested when its fourth packet
dequeues. While DiffECNcan determine the congested flow
in the first packet in time according to the queue length.
Therefore less buffer is also provided to small flows under
PFTCN, which puts pressure on the shallow buffer switch due
to the overcommitment of large flows. This problem will be
more significant in end-to-end transmission with longer RTT,
which corresponds to a larger marking threshold and more
lagged congestion response.

VII. DISCUSSION, LIMITATIONS, AND FUTURE WORK

Fairness guarantee. According to § III-A, our goal is to
slow down congested flows in time when congestion occurs
through flow-distinguished marking while ensuring that the
rest of traffic is not affected. In this way, each flow gets
its fair share of bandwidth. In fact, the process of marking
each flow according to its queue length is the inverse water-
filling algorithm [37]. As we keep marking the flows with
more buffer occupancy, the released bandwidth is gradually
given to the “hungry” non-congested flows. Suppose there are
three active flows competing for an outgoing port at the same
time, and their bandwidth requirements are the same. Due
to the difference in reach time, F2 occupies more buffer; F1
and F3 occupy less buffer. In this case, F2 is marked and its
queue length gradually decreases until it reaches the fair queue
length. F1 and F3, on the other hand, are not marked. So they
can get more bandwidth and quickly increase the sending rate
in a short time, with their queue length reaching the same as
F1. The allocated bandwidth for high-speed flows gradually
rises to a fair share, and the queue length gradually decreases
to a fair level.
Count active flows periodically. DiffECN only records flows
that are currently in the queue, i.e., active flows. The state of
a flow is updated for each cycle Tperiod (we have discussed

15

parameter sensitivity about Tperiod in § VI-B2). If a flow does
not send packets consistently, its subsequent packets are likely
to be treated as a new active flow, depending on the update
period Tperiod. In other words, if the flow is stalled for a time
greater than Tperiod, then its subsequent packets are treated as
a new flow, and a new queue is reassigned. Otherwise, it is
proved that the queue is still occupied by this flow and will
not be allocated. Therefore, the probability of two active flows
coexisting in the same queue is low.
Overhead in design. In our approach, we need to consider
the overhead from two operations. The first is the probing
overhead described in § IV-B, where a packet from a flow
in a high-priority queue triggers probing to see if there is
an empty queue at that time before the flow’s passed size
exceeds the “pass limit”. In the Tofino switch, we use ternary
matching to find empty queues to avoid loop operations. The
matching operation is natively supported by the data plane
and does not affect the line-speed processing. Besides, we
get the length of the queue by recirculating at ingress. Note
that it will put pressure on the data plane. To minimize
the overhead, in the future, we can update the queue length
periodically, e.g. every few packets. But it will introduce a
loss of precision, due to the infrequent updating. Thus we
face a tradeoff between precision and overhead in the testbed
implementation. Fortunately, Tofino2 has already implemented
this feature [6]. It has an inbuilt feature tailored for fetching
queue length in ingress and does not consume any additional
ingress cycles or bandwidth. So we think this problem can be
solved by upgrading the device.
Heavy incast. Theoretically, active flows on a link will exceed
the number of queues on the port under heavy incast. In
this case, DiffECN will fall back to a modified per-queue
scheme to ensure that no side effects occur. We have tested
the performance in a scenario with almost small flows, where
the number of active flows exceeds the number of queues in
Fig. 12. It shows that DiffECN can achieve almost similar
performance with per-queue. In fact, under real workload and
typical network bandwidth, it is often hardly possible for the
active flows of a switch link to exceed the number of queues.
Fig. 7(a) and 7(b) demonstrate that only in rare cases (like
90% load with 400G links) will the number of queues be
exhausted. Moreover, according to [47],the average load of
datacenters does not exceed 50%. Therefore, we believe that
DiffECN can handle most cases when providing a queue for
each active flow.
Universality. In § III, we use end-to-end transmission to illus-
trate the problems with traditional schemes. DiffECN seems
to be more effective in long RTT scenarios because congested
flows cannot be contained in time. However, congestions due
to incast-like traffic patterns are frequent in datacenters, which
can lead to longer total RTTs. In this case, innocent short
flows still suffer long-term harm and DiffECN can alleviate
the problems in traditional schemes.

VIII. RELATED WORK

ECN-based transport in datacenters. Generally, ECN-
related works in datacenters are vast [29], [3], [19], [17],

[18], [52], [13]. ECN* [29] is more sensitive than DCTCP
and a lower ECN marking threshold can greatly affect the
throughput. To adapt to the varying queue capacity caused
by packet schedulers, TCN [17] and ECN# [18] are proposed
to use instantaneous sojourn time. ACC [13] leverages deep
reinforcement learning to adjust ECN parameters dynamically.
These arts fall into the category of per-port marking and fail
to guarantee fairness among flows passing through the same
port. CoDel [20] and MQ-ECN [19] move one step forward
by applying the per-queue marking. That is, setting separate
ECN thresholds for each queue, in which multiple flows may
still share the same threshold. Although FQ-CoDel [53] can
do per-flow by creating 1024 egress queues, it has deploy-
ment challenges practically. Compared to per-queue marking,
DiffECN can better handle bursty datacenter workloads by
approximating the more fine-grained per-flow ECN marking.
Marking threshold settings in AQM. The most well-known
rule of buffer sizing shows that the minimum marking thresh-
old should be C ∗ RTT/

√
N when there are a large number

of N long-lived TCP Reno flows [54]. The rule-of-thumb
C ∗RTT has been applied for regular TCP. Our DiffECN also
follows this principle, except that we dynamically adjust the
settings in proportion to the number of active flows. Ideal
ECN-based datacenter congestion control algorithms [1], [29],
[38] usually set the two thresholds of RED to the same value,
i.e., Kmin = Kmax = K = λ ∗ C ∗ RTT . In addition, the
sojourn time is also set, from the above rule, to determine if
ECN marking is required sometime. The instantaneous sojourn
time in TCN [17] and ECN# [18] are both set to λ ∗RTT .

IX. CONCLUSION

This paper aims at approximating per-flow marking for a
bursty datacenter. We propose DiffECN based on the classical
ECN scheme to mark flows differentially, guaranteeing timely
rate curtailment for congested flows and deserved bandwidth
for non-congested ones. Extensive experiments have validated
its performance and burst tolerance. With the valid implemen-
tation and without any changes at the end-host, we envision
that DiffECN has the potential to be deployed in modern
production datacenters.

REFERENCES

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in ACM
SIGCOMM, 2010, pp. 63–74.

[2] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab et al., “Scaling memcache
at facebook,” in USENIX NSDI, 2013, pp. 385–398.

[3] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale rdma deployments,” ACM SIGCOMM Computer Communication
Review, vol. 45, no. 4, pp. 523–536, 2015.

[4] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh et al., “Hpcc: High precision congestion
control,” in ACM SIGCOMM, 2019, pp. 44–58.

[5] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “Timely: Rtt-based
congestion control for the datacenter,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 537–550, 2015.

[6] P. Goyal, P. Shah, K. Zhao, G. Nikolaidis, M. Alizadeh, and T. E.
Anderson, “Backpressure flow control,” in USENIX NSDI, 2022, pp.
779–805.

[7] G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu, B. Montazeri,
Y. Wang, K. Springborn, C. Alfeld, M. Ryan et al., “Swift: Delay is
simple and effective for congestion control in the datacenter,” in ACM
SIGCOMM, 2020, pp. 514–528.

16

[8] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,”
ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp.
435–446, 2013.

[9] M. Al-Fares, V. Beauregard, K. Grant, A. Griffith, J. Hasan, C. Huang,
Q. Leng et al., “Change management in physical network lifecycle
automation,” in USENIX ATC, 2023, pp. 635–653.

[10] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi, N. McKeown,
I. Abraham, and I. Keslassy, “Virtualized congestion control,” in ACM
SIGCOMM, 2016, pp. 230–243.

[11] K. He, E. Rozner, K. Agarwal, Y. Gu, W. Felter, J. Carter, and A. Akella,
“Ac/dc tcp: Virtual congestion control enforcement for datacenter net-
works,” in ACM SIGCOMM, 2016, pp. 244–257.

[12] W. Bai, S. Hu, K. Chen, K. Tan, and Y. Xiong, “One more config
is enough: Saving (dc) tcp for high-speed extremely shallow-buffered
datacenters,” IEEE/ACM Transactions on Networking, vol. 29, no. 2,
pp. 489–502, 2020.

[13] S. Yan, X. Wang, X. Zheng, Y. Xia, D. Liu, and W. Deng, “Acc:
Automatic ecn tuning for high-speed datacenter networks,” in ACM
SIGCOMM, 2021, pp. 384–397.

[14] Y. Zhang, Y. Liu, Q. Meng, and F. Ren, “Congestion detection in lossless
networks,” in ACM SIGCOMM, 2021, pp. 370–383.

[15] K. K. Ramakrishnan and R. Jain, “A binary feedback scheme for
congestion avoidance in computer networks,” ACM Transactions on
Computer Systems (TOCS), vol. 8, no. 2, pp. 158–181, 1990.

[16] S. Floyd, D. K. K. Ramakrishnan, and D. L. Black, “The Addition of
Explicit Congestion Notification (ECN) to IP,” Internet Requests for
Comments, Internet Engineering Task Force, RFC 3168, Sep. 2001.
[Online]. Available: https://www.rfc-editor.org/info/rfc3168

[17] W. Bai, K. Chen, L. Chen, C. Kim, and H. Wu, “Enabling ecn over
generic packet scheduling,” in ACM CoNEXT, 2016, pp. 191–204.

[18] J. Zhang, W. Bai, and K. Chen, “Enabling ecn for datacenter networks
with rtt variations,” in ACM CoNEXT, 2019, pp. 233–245.

[19] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ecn in multi-service
multi-queue data centers,” in USENIX NSDI, 2016, pp. 537–549.

[20] K. Nichols and V. Jacobson, “Controlling queue delay,” Communications
of the ACM, vol. 55, no. 7, pp. 42–50, 2012.

[21] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, pp. 50–61, 2011.

[22] “Intel tofino. https://www.intel.com/content/www/us/en/prod
ucts/network-io/programmable-ethernet-switch/tofino-series.html.”
2023.

[23] “Intel tofino2. https://www.intel.com/content/www/us/en/prod
ucts/network-io/programmable-ethernet-switch/tofino-2-series.html.”
2023.

[24] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in ACM IMC, 2010, pp. 267–280.

[25] S. Ibanez, G. Antichi, G. Brebner, and N. McKeown, “Event-driven
packet processing,” in ACM HotNets, 2019, pp. 133–140.

[26] “Network simulator 3. https://www.nsnam.org/. 2023.” 2023.
[27] “Ieee 802.1 qau - congestion notification. http://www.ieee802.org/1/page

s/802.1au.html. 2010.” 2010.
[28] S. Floyd and V. Jacobson, “Random early detection gateways for

congestion avoidance,” IEEE/ACM Transactions on networking, vol. 1,
no. 4, pp. 397–413, 1993.

[29] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang, “Tuning ecn for
data center networks,” in ACM CoNEXT, 2012, pp. 25–36.

[30] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of dctcp:
stability, convergence, and fairness,” ACM SIGMETRICS Performance
Evaluation Review, vol. 39, no. 1, pp. 73–84, 2011.

[31] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM computer communication
review, vol. 38, no. 4, pp. 63–74, 2008.

[32] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav et al., “Conga:
Distributed congestion-aware load balancing for datacenters,” in ACM
SIGCOMM, 2014, pp. 503–514.

[33] V. Addanki, M. Oliver, and S. Stefan, “Powertcp: Pushing the perfor-
mance limits of datacenter networks,” in USENIX NSDI, 2022, pp. 51–
70.

[34] J.-Y. Le Boudec, “Rate adaptation congestion control and fairness:
A tutorial. https://leboudec.github.io/leboudec/resources/tutorial.html.”
November 2021.

[35] D. Shan, F. Ren, P. Cheng, R. Shu, and C. Guo, “Micro-burst in data
centers: Observations, analysis, and mitigations,” in IEEE ICNP, 2018,
pp. 88–98.

[36] J.-Y. Le Boudec, “Rate adaptation, congestion control and fairness: A
tutorial,” Web page, November, vol. 4, 2005.

[37] E. Danna, A. Hassidim, H. Kaplan, A. Kumar, Y. Mansour, D. Raz, and
M. Segalov, “Upward max min fairness,” in IEEE INFOCOM, 2012, pp.
837–845.

[38] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacen-
ter tcp (d2tcp),” ACM SIGCOMM Computer Communication Review,
vol. 42, no. 4, pp. 115–126, 2012.

[39] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit
round robin,” in Applications, technologies, architectures, and protocols
for computer communication, 1995, pp. 231–242.

[40] “P4 open source programming language. https://p4.org.” 2023.
[41] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,

“Fastpass: A centralized” zero-queue” datacenter network,” in ACM
SIGCOMM, 2014, pp. 307–318.

[42] A. Tharwat, “Classification assessment methods,” Applied Computing
and Informatics, vol. 17, no. 1, pp. 168–192, 2020.

[43] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and flexible
data center network,” in ACM SIGCOMM, 2009, pp. 51–62.

[44] “Empirical traffic generator. https://github.com/datacenter/empi rical-
traffic-gen.” 2015.

[45] V. Paxson and S. Floyd, “Wide area traffic: the failure of poisson
modeling,” IEEE/ACM Transactions on networking, vol. 3, no. 3, pp.
226–244, 1995.

[46] M. S. Taqqu, W. Willinger, and R. Sherman, “Proof of a fundamental
result in self-similar traffic modeling,” ACM SIGCOMM Computer
Communication Review, vol. 27, no. 2, pp. 5–23, 1997.

[47] A. Roy, Z. Hongyi, B. Jasmeet, P. George, and A. C. Snoeren, “Inside
the social network’s (datacenter) network,” in ACM SIGCOMM, 2015,
pp. 123–137.

[48] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
datacenter load balancing in the wild,” in ACM SIGCOMM, 2017, pp.
253–266.

[49] Intel, “P416 intel® tofino™ native architecture – public
version. https://raw.githubusercontent.com/barefootnetworks/open-
tofino/master/public tofino-native-arch.pdf.” April 2021.

[50] C. Gao, S. Chu, H. Xu, M. Xu, K. Ye, and C.-Z. Xu, “Flash: Joint
flow scheduling and congestion control in data center networks,” IEEE
Transactions on Cloud Computing, 2021.

[51] K. Liu, C. Tian, Q. Wang, H. Zheng, P. Yu, W. Sun, Y. Xu, K. Meng,
L. Han, J. Fu, and W. Dou, “Floodgate: Taming incast in datacenter
networks,” in ACM CoNTEXT, 2021, pp. 30–44.

[52] W. Bai, S. Hu, K. Chen, K. Tan, and Y. Xiong, “One more config
is enough: Saving (dc) tcp for high-speed extremely shallow-buffered
datacenters,” IEEE/ACM Transactions on Networking, vol. 29, no. 2,
pp. 489–502, 2020.

[53] T. Hoiland-Jorgensen, P. McKenney, T. Dave, J. Gettys, and
E. Dumazet, “The Flow Queue CoDel Packet Scheduler and Active
Queue Management Algorithm,” Internet Requests for Comments,
Internet Engineering Task Force, RFC 8290, Jan. 2018. [Online].
Available: https://www.rfc-editor.org/info/rfc8290

[54] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
ACM SIGCOMM Computer Communication Review, vol. 34, no. 4, pp.
281–292, 2004.

Hanlin Huang (Graduate Student Member, IEEE) received the B.E. degree
from the Software College of Nankai University, Tianjin, China in 2021. He
is currently pursuing the Ph.D. degree with Tsinghua University. His research
interests include data center network and AQM.

Ke Xu (Fellow, IEEE) received his Ph.D. degree from Tsinghua University,
Beijing, China. He is currently a Full Professor with the Department of
Computer Science, Tsinghua University. He has published more than 200
technical articles and holds 11 U.S. patents in the research areas of next-
generation internet, blockchain systems, the Internet of Things, and network
security. He serves as the Steering Committee Chair for IEEE/ACM IWQoS.
He has guest-edited several special issues for IEEE and Springer journals. He
is an Editor of IEEE INTERNET OF THINGS JOURNAL.

Tong Li (Member, IEEE) received his Ph.D. degree from the Department of
Computer Science and Technology of Tsinghua University, China in 2017.
He received his B.E. degree from the School of Computer Science of Wuhan
University, China in 2012. He held a visiting scholar with the School of
Computer Science and Electronic Engineering of University of Essex, UK in
2014 and 2016. He worked as a Chief Engineer in Huawei before 2022, and
currently he serves as an associate professor in Renmin University of China.
His research interests include networking, distributed systems and big data.

Zhuotao Liu received the Ph.D. degree from the University of Illinois
at Urbana-Champaign, USA. He is currently an Associate Professor with
Tsinghua University. Before joining Tsinghua, he was a Technical Lead with
Google, managing one of world’s largest software-defined datacenter net-
works. His research interests include data/AI security and privacy, blockchain
and applied cryptography, and secure internet architecture.

Xinle Du received the B.E. degree from the Department of Computer Science
and Technology of Xidian University, Xi’an, China in 2018, and the Ph.D.
degree from the Department of Computer Science and Technology, Tsinghua
University, Beijing, China, in 2023. Currently, he works as Chief Engineer at
Computer Network and Protocol Lab, Huawei Technologies since 2023. His
research interests include networking and LLM system.

Xiangyu Gao received his B.S. degree from the Taishan College, Shandong
University, Qingdao, China in 2021. He is working toward his Ph.D. degree in
Tsinghua University, Beijing, China. His research interests include datacenter
networking and programmable dataplane.

