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ABSTRACT
Distributed denial-of-service (DDoS) protection services capture

various flooding attacks by analyzing traffic features. However,

existing services are unable to accurately detect tunneled attack

traffic because the tunneling protocols encrypt both packet headers

and payloads, which hide the traffic features used for detection, and

can thus evade these detection services. In this paper, we develop

Exosphere, which detects tunneled attack traffic by analyzing packet

length patterns, without investigating any information in packets.

Specifically, it utilizes a deep learning based method to analyze the

semantics of packet patterns, i.e., the features represent the strong

correlations between flooding packets with similar length patterns,

and classify attack traffic according to these semantic features.

We prove that the strong correlations of packet length patterns

ensure the theoretical guarantee of applying semantic analysis to

recognize correlated attack packets. We prototype Exosphere with
FPGAs and deploy it in a real-world institutional network. The

experimental results demonstrate that Exosphere achieves 0.967
F1 accuracy, while detecting flooding traffic generated by unseen

attacks and misconfigurations. Moreover, it achieves 0.996 AUC

accuracy on existing datasets including various stealthy attacks, and

thus significantly outperforms the existing deep learning models.

It achieves accuracy comparable to the best performances achieved

by 12 state-of-the-art methods that cannot detect tunneled flooding

traffic, while improving their efficiency by 6.19 times.
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1 INTRODUCTION
Distributed denial-of-service (DDoS) attacks generating volumetric

traffic towards critical infrastructures are still a vital threat to the

Internet [29, 56, 62, 90]. To mitigate such threat, commercialized

DDoS prevention services have been developed to detect flooding

traffic according to features extracted from packets [1, 17, 23, 89].

Particularly, different commercial service providers, e.g., Cloud-

flare [23], Cisco [17], and Akamai [1], utilize machine learning (ML)

models to recognize traffic features of stealthy flooding attacks

targeting vulnerable Internet applications [58, 63, 91]. The market

of such traffic detection services is valued at 3.64 billion USD with

a fast growth of 14.04% per year [77].

However, existing traffic detectionmethods are unable to identify

flooding traffic delivered through tunnels. Since tunneling proto-

cols [45–48], which are widely adopted on the Internet [88, 103],

encrypt all bytes of packet headers and payloads that are used to

extract traffic features [14, 34, 35, 75, 128] for detection. Due to the

absence of discernible traffic features, existing detection methods

are unable to recognize attack traffic encapsulated in the tunnels. In

particular, these tunnels deliver both benign and attack packets [46–

48, 103], which requires detecting attacks according to fine-grained

classification of each packet, invalidating traditional coarse-grained

flow- and host-level detection [8, 33, 68, 100, 125].

In this paper, we set out to develop a traffic detection service that

allows users to enable detecting tunneled attack traffic [47, 48, 88,

103], particularly stealthy flooding traffic [58, 71, 76], based solely

on packet length patterns, without requiring any traffic features that

are encrypted in the tunnels. Therefore, our method significantly

differs from all existing methods that heavily rely on plain-text

headers [33, 75, 128] and payloads [52, 81] that are used to extract

various traffic features.

We note that massive packets generated by stealthy flooding

behaviors on the Internet normally are with similar length pat-

terns [40, 56, 62]. For example, botnet owners instruct compromised

machines to frequently generate particular packet sequences that

can effectively deplete Internet resources [58, 64, 66, 71, 91]. Thus,

we can still perform correlation analysis on packet length patterns

to recognize massive correlated packets within a small time win-

dow as flooding traffic, even if we cannot extract traditional traffic

features [33, 34, 44, 75].

We model the distribution of Internet packet patterns to prove

that flooding traffic exhibits significant correlations measured by

entropy, variance, and range, which demonstrates the feasibility

of classifying packets generated by flooding behaviors according

to correlated packet length patterns. In addition, we prove that

length patterns of flooding traffic significantly deviate from benign

patterns by large margins measured by KL-divergence and 𝑙1-norm,
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Table 1: The comparison with the existing methods of attack traffic detection.

Category Method

ML

Model

Detection

Granularity

Required

Headers

Traffic in

Tunnels

Detection Ability
2

Runtime Performance

Generic Robust Zero-Shot Hardware Realtime Efficient

Fixed

Rules

Poseidon [125] w/o Host L3, L4
1 × × × × ✓ ✓ ✓

RADAR [127] w/o Flow L3, L4 × × × × ✓ × ✓
Jaqen [68] w/o Flow L3, L4 × × × × ✓ ✓ ✓
Ripple [119] w/o Flow L3, L4 × ✓ × × ✓ ✓ ✓

Machine

Learning

nPrintML [44] AutoML Packet L2 ∼ L5 × ✓ × × ✓ × ×

Kitsune [75] Encoder Packet L2 ∼ L4 × ✓ × ✓ × × ×

Whisper [33] K-Means Host L3 × ✓ ✓ ✓ × ✓ ✓
FAE [35] Encoder Flow L3 × × ✓ ✓ × × ×

FlowLens [8] Forest Flow L3, L4 × ✓ × × ✓ × ✓
NetBeacon [128] Tree Flow L3, L4 × × × × ✓ ✓ ✓
Taurus [100] DNN Host L3, L4 × × × × ✓ ✓ ✓
N3IC [96] BNN Flow L3, L4 × ✓ × × ✓ ✓ ✓

HyperVision [34] Graph Flow L3, L4 × ✓ ✓ ✓ × ✓ ✓
Exosphere CNN Packet - ✓ ✓ ✓ ✓ ✓ ✓ ✓

1
According to the Internet model, L2 ∼ L5 refer to requiring headers fields of link layer, network layer, transport layer, and application layer, respectively.

2
Generic, robust, and zero-shot detection refer to the capability of detecting various stealthy attacks [29, 56, 58, 62, 70], evasion attacks [33], and unseen attacks [75].

which provides guarantees of detecting tunneled flooding traffic

via packet length pattern analysis.

To this end, we develop Exosphere that utilizes deep learning

(DL) based semantic analysis [13, 69, 126] to recognize correlated

length patterns associated with flooding packets. In particular, it

treats Internet traffic as an infinite sequence of packet lengths, and

utilizes convolutional neuron networks (CNNs) to represent corre-

lations between consecutive packets as semantic features [7, 13, 61].

Such semantic features can differentiate strongly correlated similar

packets generated by flooding behaviors, which allows Exosphere
to detect various stealthy flooding attacks by recognizing associ-

ated flooding behaviors [40, 58, 91]. Moreover, Exosphere avoids
computation-intensive packet header analysis [8, 96, 125] by mea-

suring packet length patterns on optical network devices [110, 113],

ensuring significant improvements on detection efficiency over the

existing methods [33, 34, 75].

However, it is non-trivial to capture flooding traffic by analyzing

complicated length patterns exhibited by Internet packets of various

services because simply length pattern analysis incurs false nega-

tives and false positives [2, 36]. To ensure the detection robustness,

we develop a feature embedding method that utilizes the time-scale

distribution associated with the length patterns to effectively corre-

late packets, which can effectively prevent existing evasion attacks

that inject perturbations to the length patterns by inserting benign

packets [33, 35]. Moreover, we design a deep neural network (DNN)

based semantic analysis model built upon symmetrically arranged

convolutional layers. It gradually extracts semantic features to rep-

resent the correlations between packets, and afterward propagates

the semantic features to accurately classify all packets involved in

the correlation analysis.

We prototype built upon FPGAs [112, 115, 118] and compare it

with a software implementation on a testbed with Intel DPDK [49].

In particular, we deploy Exosphere1 in an institutional network and

measure the performance. We observe that Exosphere achieves an
accuracy of 0.967 F1-score, when detecting flooding traffic gener-

ated by 12 attacks and a real misconfiguration event. To complement

1
Codebase and Datasets: https://github.com/fuchuanpu/Exosphere.

the real-world experiments, we also replay existing datasets over

various tunnels [45, 47]. Such datasets cover 120 different attacks

that are conducted by various botnets [62] targeting varieties of

Internet services [56], and include a broad spectrum of stealthy

attacks, e.g., link flooding attacks [58], pulsing attacks [66, 71] and

amplification attacks [78, 91]. Our results demonstrate that Exo-
sphere realizes 0.968 F1-score, and outperforms existing semantic

analysis models [13, 69, 126]. Meanwhile, it achieves comparable

accuracy to 12 state-of-the-art methods [8, 44, 75, 96] that cannot

capture tunneled attack traffic, while improving their throughput by

6.19 times, i.e., processing 170.45 million packets/s with the latency

bounded by 120 us. Additionally, it is robust against adversarial

traffic constructed by existing evasion attacks [33].

In summary, the contributions of this paper are four-fold:

• We propose Exosphere, the first detection system to cap-

ture tunneled attack traffic by only analyzing correlations of

packet length patterns with DL based semantic analysis.

• We prove that packet length patterns associated with flood-

ing attacks exhibit strong correlations.

• We develop a feature embedding method that effectively

correlates length patterns by utilizing time information and

design a deep learning based semantic model to identify the

strong correlations between attack packets.

• We prototype Exosphere with hardware and conduct real-

world deployment to validate its accuracy and efficiency.

Note that, Exosphere is not designed to replace the existing

methods. Instead, it aims to achieve the design goals of traditional

detection methods, e.g., comparable detection accuracy, without

processing any bytes in plain-text packets, which allows users to

detect attack traffic without investigating their private data.

The rest of the paper is organized as follows: Section 2 presents

the threat model. In Section 3, we describe the motivation and

conduct theoretical analysis. In Section 4, we present the design

of Exosphere. In Section 5, we experimentally evaluate Exosphere.
In Section 6, we discuss its limitations. Section 7 reviews related

works, and Section 8 concludes this paper.

Ethical Issues. Exosphere does not rely on personal data contained
in Internet packets for training and validating ML models, and thus
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Figure 1: Threat model of Exosphere traffic detection system.

avoids privacy issues in real-world evaluation. In strict adherence

to the encryption standards of tunneling protocols [45, 47], every

byte of packets from real users is encrypted. That is, we only ana-

lyze packet length patterns without storing plain-text personal data.

Additionally, traffic mirroring and firewalls are configured to pre-

vent attack traffic from interfering with real users (see Section 5.1).

Besides, all users and administrators consent to our experiments

and the release of traffic datasets.

2 THREAT MODEL AND DESIGN GOALS
2.1 Threat Model
Network Topology. Figure 1 illustrates the threat model. We as-

sume that victim servers hosting critical services should be accessed

through a tunnel gateway, e.g., a hardware device [122] or a vir-

tual one created by a cloud service [4, 73]. To access the servers, a

subnet can establish a tunnel to the victim’s network via another

tunnel gateway. Similarly, user devices can establish tunnels to

the victim’s gateway using client software [48, 121]. Note that, the

tunnels encrypt original packets via symmetric encryption algo-

rithms (e.g., AES-GCM) and encapsulate the encrypted headers and

payloads into new packets [45, 47], thereby delivering data through

the Internet and prevent traffic analysis attacks [25, 93, 95, 124].

Abilities of Attackers. We assume that attackers can instruct

compromised devices outside the victim network to generate vol-

umetric flooding traffic targeting the victims. That is, the tunnel

gateways located outside the victim network encrypt the traffic

and transmit it through the tunnels. Afterward, the tunnel gateway

within the victim network will correctly decrypt the attack traffic

and forward it to the victim servers. In addition, attackers may

send the traffic through the tunnels established at the compromised

devices [48], which can be identified from routing tables on the

devices [121]. As a result, existing detection systems, which are

commonly deployed at borders of clouds [21, 74] and ISPs [33, 68],

cannot analyze packet headers to identify the attack traffic, since

the traffic is encrypted at tunnel gateways or end hosts. In Section 6,

we validated that real-world detection services [21, 74] cannot filter

traffic delivered by commercial tunneling services [22, 73].

In addition, we assume that attackers may control varying scales

of devices resulting in highly variable attack speeds [56]. Note

that, we consider advanced attack vectors of stealthy attacks, such

as link flooding attacks (LFA) [58, 119] and pulsing attacks [66,

71]. Moreover, we also consider evasion strategies [33, 35] that

circumvent detection systems [75, 128].

Abilities of Exosphere. Exosphere can be deployed at the same lo-

cations as existing traffic detection services, such as those inspecting

incoming traffic at border routers of ISPs and clouds [5, 19, 74, 84].

Also, it can be deployed in traffic scrubbing centers [1, 17]. In

the presence of tunneling protocols, Exosphere can only measure
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Figure 2: Packet length patterns of attack and benign traffic.
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Figure 3: Packet length pattern distribution analysis.

packet length patterns to recognize flooding behaviors, which is

different from existing length feature based detection that requires

information other than packet lengths [8]. Upon detecting flooding

traffic, it raises alerts to notify the victim, and throttles the traffic

by cooperating with existing defense systems [119, 125], e.g., to

limit total bandwidths of abnormal traffic [68, 125].

2.2 Design Goals
Exosphere aims to detect flooding traffic in the tunnels, in response

to the trend where around 70% malware campaigns use tunnels

to hide malicious activities, including approximately 54% of these

involving traffic flooding [34]. Note that, existing detection meth-

ods cannot detect tunneled traffic due to the reliance on plain-text

packet headers, whereas tunneling protocols obscure the packet

headers by encryption. As a result, existing commercial DDoS pre-

vention services cannot effectively filer traffic in the tunnels. Mean-

while, we aim to retain the design goals of traditional methods,

which are compared in Table 1: (i) Generic detection against various

stealthy attacks [11, 58], regardless of their speeds, durations, and

protocols [45, 47, 72]; (ii) Robust detection against evasion attacks

that manipulate traffic patterns [33, 35]; (iii) Zero-shot detection

against unseen attacks [65, 101]; and (iv) Low-latency detection for

high-speed traffic. Moreover, Exosphere aims to detect sophisticated

flooding attacks (e.g., the Crossfire attack [58]) that generate low-

rate stealthy traffic [3] and do not generate sheer traffic [119], which

is different from the traditional volumetric flooding [68, 127, 128].

These goals cannot be easily achieved by existing methods.

3 MOTIVATION
3.1 Key Observation
We observe that packet sequences generated by flooding behaviors

on the Internet commonly exhibit similar and periodical length
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patterns. Specifically, Figure 2 depicts length patterns of evenly

sampled flooding traffic and benign traffic from six real-world

datasets [34]. Compared with benign traffic collected at border

routers connecting peers of an autonomous system (AS) [109], these

attack packets exhibit regular length patterns and are densely dis-

tributed on the time scale. For instance, botnet owners instruct in-

fected machines to frequently send particular packet sequences [41,

56], e.g., TCP SYN [11], SSH renegotiation [53], and regular UDP

bursts [71], because sending such sequences at high speeds can

effectively consume resources [62]. As a result, massive flooding

packets are significantly correlated by their similar length patterns

and are located in small time ranges (see Figure 3(a) and 3(b), re-

spectively). Therefore, even if we cannot extract traditional traffic

features from packets due to the encryption, we can still classify

flooding traffic as correlated packet sequences, i.e., those with simi-

lar length patterns and appearing within a small time window.

3.2 Theoretical Analysis
We validate these empirical observations via theoretical analysis.

Specifically, we model the distribution of Internet packet patterns

to prove that flooding traffic exhibits significant correlations, which

serves as the theoretical guarantee of correlation analysis based

detection for flooding traffic in the encrypted tunnels.

Packet Length Distribution Model. We investigate the distri-

butions of Internet packet lengths. First, we model packet lengths

of Internet traffic using a bimodal distribution based on empirical

studies. In Figure 4(a) and Figure 4(b), we plot packet features col-

lected from Wide Area Network (WAN) traffic datasets [109]. We

find that packet lengths are centrally distributed, a pattern similar

to traffic in an enterprise network [128] (see Figure 4(c) and Fig-

ure 4(d)), because transmission protocols improve throughput by

using long packets filled with data, in contrast, their control mes-

sages are designed to be short (e.g., TCP RST). Therefore, we denote

lengths of 𝑁 packets as ®𝑠 = [𝑠1, . . . , 𝑠𝑁 ], and use the superposition

of two normal distributions to model the bimodal distribution, i.e.,

∀1 ≤ 𝑖 ≤ 𝑁 , 𝑠𝑖 = 𝜉𝑖𝑛1 + (1 − 𝜉𝑖 )𝑛2, where 𝜉𝑖 ∼ 𝐵(1, 𝑝) (𝑞 = 1 − 𝑝),
𝑛1 ∼ N(𝜇1, 𝜎1), and 𝑛2 ∼ N(𝜇2, 𝜎2). In addition, we assume that

the lengths are independent and normalized, i.e., −𝜇1 = 𝜇2 = 𝜇

(𝜇2 > 0). Notably, the skewness of the distribution is low, which

implies 𝜎1 ≈ 𝜎2. Besides, Figure 4(a) illustrates that the presence of
flooding traffic results in an increased 𝑝 . Additionally, we model the

arrival intervals using exponential distributions, which is similar

to existing studies [34, 64]. Formally, let
®𝑙 = [𝑙1, . . . , 𝑙𝑁 ] denote the

arrival intervals, where ∀1 ≤ 𝑖 ≤ 𝑁 , 𝑙𝑖 ∼ 𝐸 (𝜆). Figure 4(b) shows
that 𝜆 increases when attackers generate flooding traffic which

leads to a decreased average interval (i.e., E[𝑙𝑖 ] = 1/𝜆).
Packet Length Pattern Analysis. We prove that the presence of

flooding traffic, as indicated by changes in the parameters (i.e., 𝑝

and 𝜆), results in significant deviation in correlation measured by

three metrics: (i) range, (ii) entropy, and (iii) variance. Moreover,

we analyze distances between the attack and benign traffic patterns

measured by KL-divergence and 𝑙1-norm. In summary, we derive

the following theorems. The complete proofs are available in the

extended version of this paper [32].

Theorem 3.1. (Range Features of Packet Lengths.) Let 𝑅(®𝑠) de-
note the range between maximum and minimum packet lengths. The
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Figure 4: Comparison of packet feature distributions.

expectation of the range is:

E[𝑅 (®𝑠 ) ] = 𝑁
√
2𝜋

[𝑞𝜎2 − 𝑝𝜎1 ] +
𝐶𝑁𝜇
√
𝜋
, (1)

where the constant 𝐶 =
∫ +∞
0

𝑒−𝑡
2

d𝑡 ≈ 0.8862.

We find that, in the presence of flooding traffic as indicated by

increased 𝑝 , the range of packet lengths decreases. Thus, attack

packets exhibit similar length patterns that fall within small ranges.

Moreover, we validate the conclusion using entropy and variance

to characterize the correlation of packet length patterns.

Theorem 3.2. (Entropy of Packet Lengths.) The differential entropy
of packet lengths is:

H[®𝑠] = 𝑁

2

(1 + ln 2𝜋) + 𝑁 ln(𝜎1
𝑝
)𝑝 (𝜎2

𝑞
)𝑞 . (2)

Under the condition that 𝜎1 = 𝜎2, H[®𝑠] is a decreasing function of 𝑝 .

Theorem 3.3. (Variance of Packet Lengths.) LetV(®𝑠) denote the
variance of packet lengths. We can approach the variance by:

V[®𝑠 ] = (−4𝜇2𝑝2 + 𝑝 (4𝜇2 − 𝜎2

1
+ 𝜎2

2
) + 𝜎2

2
) · 𝑁, (3)

when 𝑝 ≥ argmax𝑝 V[®𝑠] = 𝜎2

1
−𝜎2

2

8𝜇2
+ 1

2
, it is a decreasing function.

Theorems 3.2 and 3.3 show that flooding attacks characterized

by decreased 𝑝 result in strong correlations, as evidenced by lower

range, lower entropy, and lower variance. This indicates packets

associated with flooding attacks are strongly correlated by their

length patterns. Next, we analyze the distances between traffic

length patterns.

Theorem 3.4. (KL-Divergence of Packet Length Features.) We use
DKL (F1 | |F2) to denote the KL-divergence between F1 and F2, i.e.,
the packet length distributions with and without the interference of
flooding traffic, respectively.

DKL (F1 | | F2 ) = ln( 𝑝1
𝑝2

)𝑝1 ( 1 − 𝑝1
1 − 𝑝2

) (1−𝑝2 ) , (4)

where 𝑝1 and 𝑝2 are the parameters of the distributions. Note that,
the divergence increases as the value of 𝑝2 increases.
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Figure 5: High-level architecture of Exosphere.

Theorem 3.5. (𝑙1-Norm Distance of Packet Lengths.) We derive a
lower bound for the distance measured by 𝑙1-norm:

D𝑙1 (F1 | | F2 ) = E[ |®𝑠1 − ®𝑠2 | ] ≥ 2𝜇𝑁 · (𝑝2 − 𝑝1 ), (5)

where ®𝑠1 and ®𝑠2 are the length vectors associated with benign and
attack traffic. The bound is an increasing function of 𝑝2.

Theorems 3.4 and 3.5 demonstrate that the length distributions

drift significantly in terms of the distances. In addition, higher rates

of flooding traffic (indicated by higher 𝑝2) result in larger margins

between the distributions, making high-rate attacks easier to be

captured by correlation analysis.

In summary, these theorems ensure that the packets generated by

flooding behaviors exhibit significantly correlated length patterns,

which validates the empirical observations in Section 3.1. Particu-

larly, we prove the monotonicity of the correlations (Theorems 3.1

∼ 3.3) and margins between the distributions (Theorems 3.4 and

3.5), which imply linear decision boundaries can accurately classify

flooding traffic according to the correlations between packets. In

the extended paper [32], we derive similar conclusions when con-

sidering time information associated with the length patterns. In

the following section, we utilize a DNN model to represent the cor-

relations as semantic features and approach the high-dimensional

decision boundaries to detect tunneled attack traffic.

4 DESIGN OF EXOSPHERE
4.1 High-Level Architecture
We develop deep learning based semantic analysis that represents

strong correlations between flooding packets as semantic features [69,

130]. This enables accurate detection for tunneled flooding traffic,

which achieves all the design goals. First, the semantic analysis

model can recognize correlated packet length patterns that indicate

various flooding behaviors of unseen flooding attacks [75, 101],

thereby enabling generic detection. Second, we utilize time-scale

distributions of the length patterns to improve detection robust-

ness [6, 51, 97], which can prevent evasion attacks [35]. Besides,

we measure packet lengths on hardware [110, 113], which avoids

complex operations of extracting packet features [75, 128], and

thus enables efficient detection. We design the three modules of

Exosphere, which are shown in Figure 5.

Packet Feature Extraction. First, we view all Internet traffic tar-

geting a victim network as an infinite sequence of packets, and rep-

resent each packet by its length. In particular, we measure packet

lengths and associated time information on optical network devices

to handle massive flooding traffic [110, 111, 113]. Note that, we

do not require any elements in packet headers that are encrypted

by tunneling protocols, which differs from existing detection. The

details of this module are presented in Section 4.2.

Packet Feature Embedding. Second, we develop a three-step

embedding method that utilizes time information associated with

the length patterns to correlate packets. Specifically, we normalize

extracted features, embed packet length patterns and associated

time-scale information into a single dimension, and evenly frag-

ment the produced vector. Note that, embedding the time-scale

distributions of the length patterns improves robustness against

evasion attacks [35]. We illustrate the details in Section 4.3.

Semicircular Semantic Segmentation. Finally, we segment the

sequence into attack and benign packets based on semantic features

extracted by our semicircular DNN model. Different from existing

semantic models [13, 61, 126], our model features symmetric down

and up sampling networks. Initially, it gradually expands the dimen-

sions of the input vectors to extract semantic features. Subsequently,

it compresses the dimensions to propagate the extracted semantic

features to identify abnormal packets characterized by correlated

length patterns. The design details can be found in Section 4.4.

4.2 Packet Feature Extraction
Exosphere views all traffic targeting a victim network as an infinite

sequence of packets, irrespective of whether the traffic is conveyed

through tunnels, to retain the ability of detecting non-tunneled

traffic. In this module, we process a batch of𝑁 consecutively arrived

packets at a time, such that each packet can contribute to correlation

analysis for the classification of other packets. We represent packets

as their lengths: ®𝑠 = [𝑠1, . . . , 𝑠𝑁 ]T, and record associated arrival

intervals:
®𝑙 = [0, 𝑙2, . . . , 𝑙𝑁 ]T. The intervals are calculated based

on arrival timestamps ®𝑡 = [𝑡1, . . . , 𝑡𝑁 ]T, where 𝑙𝑖 = 𝑡𝑖 − 𝑡𝑖−1 (𝑖 ∈
Z ∩ [2, 𝑁 ]). Finally, the packets are represented by

®𝑙 and ®𝑠 .
Moreover, Exosphere measures packet length patterns on hard-

ware to handle massive packets generated by flooding behaviors.

Specifically, we implement this module on FPGAs with optical de-

vices [113, 115, 118] by leveraging IP (Intellectual Property) cores

from AMD. We utilize 10G Ethernet [110] (v3.1), Tri-Mode Ethernet

MAC [114] (v9.0), and 1G/2.5G Ethernet PCS/PMA [111] (v16.2) to

convert the optical signals of various transceivers (i.e., SFP, SFP+,

and QSFP+, respectively) to AXI4 data stream. Afterward, we mea-

sure the packet lengths as durations of valid signals multiplied by

widths of data signals according to AXI4-Stream protocols [111].

Unlike existing NICs [49], we do not buffer packets, which enables

high-speed feature extraction.
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Note that, our approach only processes packet length patterns

without requiring any personal data in packets. In contrast, existing

methods view Internet traffic as multiple concurrent flows [14,

34, 35, 96]. Consequently, to aggregate packets into flows, they

inevitably rely on user identities that are concealed by tunnels,

and thus are incompatible with tunneling protocols. On the other

hand, length patterns are measured from hardware for efficient

detection [49, 110]. In comparison, existing methods necessitate

substantial resources to maintain and extract traffic features [8, 33,

128]. Besides, our approach only analyzes length patterns, which

mitigates overfitting issues [51, 97] encountered in existing studies

that rely on many complex flow features [14, 75]. By addressing

the issues, Exosphere realizes generic traffic detection.

4.3 Packet Feature Embedding
Leveraging deep learning for semantic analysis on packet length

patterns presents three challenges: First, the features collected from

the hardware lack numerical stability, leading to issues of floating-

point overflow; Second, semantic analysis should ensure robustness

against evasion attacks, e.g., injecting perturbations to the length

patterns [33, 35]; Third, it is difficult for existing DNN models to

capture correlations of long sequences [61]. To address these chal-

lenges, we develop a three-step method to embed the extracted fea-

tures by correlating packet length patterns via associated time-scale

information for practical semantic analysis. First, we normalize the

features to prevent numerical instability issues:

𝑠𝑖 =
min(𝑠𝑖 ,MTU)

MTU
, ˆ𝑙𝑖 =

min(𝑙𝑖 ,𝑇Max )
𝑇Max

, 𝑖 ∈ Z ∩ [1, 𝑁 ], (6)

whereMTU is the maximum transmission unit, and 𝑇Max is a pre-

defined maximum interval.

Second, we merge the length features and the associated time-

scale features into one dimension, and represent the time features

by their negative values, making them differentiable to the lengths:

𝑣𝑖 = 𝐼 (𝑖 ) · 𝑠⌈𝑖/2⌉ − 𝐼 (𝑖 ) · ˆ𝑙⌈𝑖/2⌉ , 𝑖 ∈ Z ∩ [1, 2𝑁 ], (7)

where 𝐼 (𝑥) = (𝑥 + 1)mod2, (𝑥 ∈ Z). In this way, we improve detec-

tion robustness by using time-scale information, which prevents

evasion strategies that add perturbations to the length patterns,

e.g., by inserting benign packets. Since we can still correlate the

attack packets by small arrival intervals produced by high sending

rates of flooding behaviors.

Finally, we divide ®𝑣 into fragments of size 2
𝑊
, because it becomes

challenging for DNN models to extract the semantic features of

long sequences:

𝑥𝑖,𝑗 =

{
𝑣ℎ (𝑖,𝑗 ;𝑊 ) , ℎ (𝑖, 𝑗 ;𝑊 ) ≤ 2𝑁, ℎ (𝑖, 𝑗 ;𝑊 ) = (𝑖 − 1)2𝑊 + 𝑗

0, else

, (8)

where ⟨ 𝑗, 𝑖⟩ ∈ Z2∩[1, 2𝑊 ]× [1, 𝑁𝑤], and 𝑁𝑤 =

⌈
2𝑁
2
𝑊

⌉
is the number

of fragments. Finally, X = [®𝑥1, . . . , ®𝑥𝑁𝑤 ] is the input feature for DL
based semantic analysis.

Figure 6 plots the embedded features of benign traffic from public

traffic datasets collected from 10 Gb/s optical links [109]. Figure 7

depicts the features of attack traffic in existing datasets [34] (as

depicted in Figure 2). Comparing the figures, we observed that

length patterns of flooding packets exhibit strong correlations, as

evidenced by regular blue and white points, which are obviously
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Figure 6: Embedded packet features of benign traffic.
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Figure 7: Embedded packet features of attack traffic.

different from weakly correlated benign features represented by

irregular red points. Thus, these embedded features can differentiate

attack packets, which enables effective semantic segmentation.

4.4 Semicircular Semantic Segmentation
We develop a DNN model that extracts semantic features from the

embedded packet features, and segments the packet sequence by

classifying each packet according to the semantic features.

Semicircular Model Architecture. Our model contains two sym-

metric parts, namely, down sampling and up sampling networks,

which is different from existing semantic analysis models for im-

ages [13, 61, 69]. Figure 8 illustrates the architecture. Specifically,

each layer of the down sampling network compresses the width

of features by a factor of two and doubles the length of features.

In this way, it can effectively extract semantic features based on

embedded packet features, which allows Exosphere to effectively

represent the correlation between packets. Subsequently, the up

sampling network employs an equal number of layers that dou-

ble the width and reduce the length by a factor of two, which is

converse to the down sampling network. This enables Exosphere
to utilize the extracted correlations to capture flooding packets

with similar patterns. Moreover, we concatenate the symmetrical

features with identical sizes in down and up sampling networks, to

effectively propagate semantic features that represent correlations

of the length patterns, and to produce precise decisions. We indi-

vidually illustrate the down sampling and up sampling networks,

and finally introduce the training of the model.

Part I: Down Sampling Network.We employ 1D convolutional

layers to extract semantic features based on embedded packet fea-

tures. In particular, the layers do not change the width of features.

This allows us to align the extracted features and concatenate the

features with their symmetrical counterparts in the down sampling

networks. Specifically, the layer cov1D(·) performs the equal-width

convolution operation on a batch of features X(𝐵×𝑈 ×𝑉 ) using ker-

nel parameters W and B. The output is represented by Y(𝐵×𝑃×𝑉 ) :

Y = [Y1, . . . ,Y𝐵 ] = cov1D(X;𝑈 , 𝑃,𝐾,W(𝑃×𝑈 ×𝐾 ) ,B(𝑃×𝐾 ) ), (9)

where 𝑈 and 𝑃 are the length of input and output features, and

𝐵 is the batch size. According to the convolution operation, the

 

3664



Detecting Tunneled Flooding Traffic via Deep Semantic Analysis of Packet Length Patterns CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Concatenate

Up
SamplingMax Pooling

W
1 Q

2Q

4Q

8Q

W/2

W/4

W/8
4Q

2Q

Q 1

2W

1 Q

2Q

4Q 8Q

2W-1

2W-2

2W-3

4Q

2Q Q 1

X Y(0) U(D)

Z(D)

O
MaxPool(·)
UpSamp(·)
Cov(·)
CovStack(·)

X
Y
U
Z

Type of Layers

Fe
at

ur
e 

M
ap

s

Cat(·,·)

W
id

th
s o

f F
ea

tu
re

s

Lengths of Features

O Output
Input
Down Samp.
Up Sampled
Intermediate

Down 
Sampling

Figure 8: Architecture of the semicircular DNNmodel (𝐷 = 3).

layer does not change the width 𝑉 , when kernel size 𝐾 = 3. More-

over, we leverage batch normalization, and stack the layers for the

effectiveness of extracting semantic features:

Y = Cov(X;𝑈 , 𝑃 ) = ReLU(BN(cov1D(X;𝑈 , 𝑃 ) ) ) . (10)

Y = CovStack(X;𝑈 , 𝑃 ) = Cov(Cov(X;𝑈 , 𝑃 ) ;𝑃, 𝑃 ) . (11)

Our down sampling network utilizes the stacked convolutional

layer to expand the length of original input X from one to 2
𝑄
:

Y(0)
(𝑁𝑤×2𝑄 ×2𝑊 )

= CovStack(X(𝑁𝑤×1×2𝑊 ) ; 1, 2
𝑄 ) (12)

After that, it employs a series of max pooling layers to gradually

reduce the width of Y(0)
while increasing the length:

Y(𝑖 ) = CovStack(MaxPool(Y(𝑖−1) ) ; 2𝑄 · 2𝑖 , 2𝑄 · 2𝑖+1 ), (13)

where 𝑖 ∈ Z∩ [1, 𝐷], and 𝐷 controls the depth of the network. Note

that, the max pooling layer extracts the maximum value within a

window of size two and slides the window with a stride length of

two, such that it compresses the width of features by a factor of

two. Finally, Y(𝐷 )
is the output of the down sampling network.

Part II: Up Sampling Network. In contrast to the down sampling

network, it reduces the length and gradually expands the width of

features. Specifically, we utilize the up sampling layer UpSamp(·)
that doubles the width of features by duplicating each element and

placing the element adjacently.

U(𝑖 ) = Cov(UpSamp(Z(𝑖−1) ) ; 2𝑄 · 2𝐷−𝑖+1, 2𝑄 · 2𝐷−𝑖 ), (14)

Z(𝑖 ) = CovStack(Cat(Y(𝐷−𝑖 )
;U(𝑖 ) ) ; 2𝑄 · 2𝐷−𝑖+1, 2𝑄 · 2𝐷−𝑖 ), (15)

where Z(0) = Y(𝐷 )
, and 𝑖 ∈ Z ∩ [1, 𝐷]. Note that, Cat(·, ·) concate-

nates two features. This allows us to feed the previously extracted

semantic features to the up sampling networks. Thus, our model

can effectively convey correlations between packets to classify the

packets. In the last layer, we flatten the feature:

O(𝑁𝑤×2𝑊 ) = Cov(Z(𝐷 )
; 2
𝑄 , 1), 𝑑𝑖 = O⌈

2×𝑖
2
𝑊

⌉
,(2×𝑖 )mod2𝑊

, (16)

where 𝑑𝑖 is the decision for 𝑖-th packet. Finally, we compare the

values in
®𝑑 = [𝑑1, . . . , 𝑑𝑁 ] with a threshold 𝜙 to judge if a packet

delivers attack traffic.

Training the Semicircular Network. To train the semantic seg-

mentation model, we transform the labels into matrix representa-

tion L = [L𝑖, 𝑗 ]𝑁𝑤×2𝑊 :

L𝑖,𝑗 =

®𝐿⌈ℎ (𝑖,𝑗 ;𝑊 )

2

⌉ · 𝐼 (ℎ (𝑖, 𝑗 ;𝑊 ) ), ℎ (𝑖, 𝑗 ;𝑊 ) ≤ 2𝑁

0, else

, (17)

where the 𝑖-th value in ®𝐿 is the label of 𝑖-th packet. Moreover, we

use the Sigmoid function to activate the output feature. The result

is represented by A:

A = [A𝑖,𝑗 ]𝑁𝑤×𝑊 = Sigmoid(O), A𝑖,𝑗 =
1

1 + 𝑒−O𝑖,𝑗
. (18)

After that, we calculate the training loss by using the Binary Cross-

Entropy (BCE) and the Dice loss [130]:
LBCE (A, L) = | |−L ◦ lnA + (1 − L) ◦ ln(1 − A) | |

1
,

LDice (A, L) = 1 −
∑
𝑖,𝑗 [A𝑖,𝑗 ]◦[L𝑖,𝑗 ]∑

𝑖,𝑗 [A𝑖,𝑗 ]+
∑
𝑖,𝑗 [L𝑖,𝑗 ]

,

L(A, L) = 1

2
LBCE (A, L) + 1

2
LDice (A, L),

(19)

where the sign ◦ denotes the Hadamard product. Notably, we use

the Dice loss to tackle class imbalance issues [38, 130]. Finally, we

back propagate the loss and leverage the Adam optimizer to update

all trainable parameters.

5 EXPERIMENTS
We prototype Exosphere and conduct a real-world deployment.

Moreover, we compare its accuracy with 12 existing systems on

existing datasets including 120 different attacks. In general, the

experiments will demonstrate that Exosphere is able to:
(1) identify real flooding attacks during a three-day deployment in

an institutional network (Section 5.2).

(2) detect various stealthy attacks, whereby outperforming existing

models as well as baselines for ablation studies (Section 5.3).

(3) realize robust detection against adversarial examples generated

by evasion attacks (Section 5.4).

(4) achieve zero-shot detection ability to capture unseen patterns

of flooding traffic (Section 5.5).

(5) process high-speed traffic with low latency on various hardware

platforms (Section 5.6).

5.1 Experiment Setup
Implementation. We develop both software and hardware pro-

totypes of Exosphere. The software prototype, which can reuse

existing devices, is implemented with over 2,000 lines of code, and

compiled by GCC v9.4.0, Ninja v1.10.0, and CMake v3.16.3. We

use Intel DPDK v19.11.9 [49] to implement the packet feature ex-

traction and embedding module. Meanwhile, we use PyTorch [86]

(v1.11.0 for CUDA v11.3 [82]) to implement the semantic analysis

module. The hardware prototype, which can be programmed on

FPGAs, is implemented by over 12,000 lines of Verilog and syn-

thesized by Vivado 2022.2 [117]. And the driver is developed with

Vitis 2022.2 [116]. To replay traffic datasets, we establish various

tunnels by using various tunneling protocols. By default, IPSec tun-

nels [47] are established using Libreswan (v3.29) with AES-GCM.

Meanwhile, we also use many other configurations and create IEEE

802.1AE L2 tunnels (i.e., MACsec [45]) by enabling its Linux kernel

implementation.

Testbed. We deploy the software prototype on a server with an

Intel Xeon E2699 v4 CPU, 24GB DDR4 memory, Intel 82599SE NIC

(2 × 10Gb/s SFP+ ports), and Ubuntu v20.04.2 (Linux v5.15.0). The

DNN model is trained and executed on a Tesla V100 GPU (driver

v470.103.01). To replay traffic datasets, we use fiber-optic cables and

optical transceivers (produced by Intel) to connect the server with

machines for traffic generation. In addition, we deploy the hardware

prototype on three off-the-shelf AMD Xilinx FPGAs with varying
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Figure 9: Network topology of real-world deployment.

scales of resources, i.e., Zynq-7000 [118], Kintex-7 [112], and Virtex-

7 [115] (hosted on NetFPGA SUME [113]), which are equipped with

SFP, SFP+, and QSFP+ optical transceivers, respectively.

Deployment. Figure 9 shows the network topology of real-world

deployment. We configure a router of an institutional network to

mirror the traffic targeting a subnet to a testbed. Such subnet hosts

GPU clusters with around 40 active users. Meanwhile, a red team

comprising two network security experts, each with four years of

experience, constructs various flooding attacks in a separate subnet

(see Table 2). Afterward, the router forwards the generated traffic

to the testbed, where benign user traffic and flooding traffic are

mixed and transmitted through an IPSec tunnel with AES-GCM

cipher-suit. Eventually, the traffic is collected by another device

controlled by administrators. The packets are labeled according to

whether they come from the subnet controlled by the attackers.

Finally, we derive the length of each packet and the associated label.

Datasets. To complement the real-world scenarios, we replay ex-

isting traffic datasets over various tunnels, including 120 attacks: (i)

HyperVision datasets [34] contain traffic from real users collected

on 10 Gb/s optical links [109] and various stealthy flooding attacks,

e.g., application specified attacks (e.g., OpenSSH [53]), link flood-

ing attacks (LFAs) [58], and flooding attacks with varying packet

rates [56]. (ii) CIC datasets [15, 16] are collected in enterprise net-

works and widely used for evaluating traffic detection [8, 128]. (iii)

Whisper datasets [35] cover reconnaissance steps of flooding attacks

and advanced attacks, such as low-rate TCP DoS attacks [64, 71].

(iii) Kitsune datasets [75] contain attack traffic targeting IoT de-

vices [102]. (iv) NetBeacon datasets [128] are collected in a private

cloud. Similar to existing studies, we split 80% traffic from the

datasets for training [44, 94, 128, 131]. Additionally, we construct

48 evasion attack datasets according to a recent study [33] for ro-

bustness analysis (see Section 5.4 for details).

Baselines.We compare Exosphere with 12 existing systems, cov-

ering both fixed rule and ML based methods. Unlike our methods,

the methods cannot capture attack traffic in the presence of tunnel-

ing protocols, which require plain-text packet contents to extract

flow features [8, 14, 33, 68, 96, 100, 128], packet features [44, 75],

host features [33, 35], and interaction features [34, 60]. We deploy

open-source methods [33, 34, 75], while prototype closed-source

methods [35, 68] and hardware-specific methods [96, 128]. For end-

to-end detection, we use random forests to learn the CICFlowMeter

feature set [14]. Note that, all ML models are retrained to realize

the highest accuracy. Besides, we use Jaqen [68] as fixed-rule based

baseline, as it outperforms other similar methods [125]. Addition-

ally, we also compare existing DNN models [13, 126, 130], and

implement baselines for ablation studies.

Hyper-Parameter Selection. Four-fold cross-validation is per-

formed to prevent the hyper-parameter bias issue [6]. These datasets

are divided into four equal groups, with each group serving as a

Table 2: Attacks constructed for real-world evaluation.

Attack Type Time Speed Accuracy
Start End Span (s) Mb/s KPPS AUC F1

NTP Amplification 11:20 11:22 102.76 2.82 4.63 0.9846 0.9615

SSDP Amplification 11:45 11:46 69.68 3.17 3.16 0.9752 0.9783

DNS Amplification 16:17 16:22 295.33 2.90 2.41 0.9661 0.9536

TCP SYN Flooding 19:24 19:59 2131.59 0.62 1.94 0.9650 0.9745

TCP RST Flooding 22:11 22:21 593.29 0.57 1.77 0.9751 0.9626

SSH Renegotiation 8:56 9:02 370.11 0.52 1.62 0.9819 0.9665

Crossfire LFA 11:26 11:30 218.59 31.12 3.19 0.9844 0.9348

Low-Rate TCP DoS 16:13 16:14 44.63 1.48 4.63 0.9999 0.9895

CharGen Flooding 21:44 21:44 35.09 40.25 5.62 0.9843 0.9818

CLDAP Amplification 8:45 8:48 165.87 2.02 3.16 0.9679 0.9538

Flooding UDP Bursts 12:47 12:54 427.20 3.66 4.24 0.9640 0.9605

Password Flooding 18:55 19:20 1542.88 5.19 3.75 0.9999 0.9746

Misconfiguration - 22:29 - 35.84 4.60 0.9999 0.9813

Overall N/A N/A 499.75 10.01 3.44 0.9806 0.9671
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Figure 10: Traffic patterns of real-world evaluation.
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Figure 11: Detection accuracy of real-world evaluation.

validation set once to fine-tune the DNN hyper-parameters based

on initial values (see the extended version [32]). The remaining

three groups are used as testing sets. The final results are obtained

by averaging the results from the four groups.

Metrics. We primarily utilize AUC (AURoC, Area Under the Re-

ceiver Operating Characteristic Curve) and F1-score (the harmonic

mean of precision and recall), because they are commonly used in

existing studies [27, 44, 75, 101, 131]. Additionally, we use various

accuracy metrics to prevent biased metric selection [6].

5.2 Real-World Evaluation
Overall, the experiment spans over three days, and the statistics of

traffic are shown in Figure 10. Specifically, the red team constructs

12 different attacks, according to existing studies [53, 56, 58, 62, 71].

These attacks are initiated at randomly selected times, and vary

in both duration and speed. In addition, a real misconfiguration

event is observed during the experiment, where a traffic replaying

program with misconfigured MAC addresses generates massive

traffic toward the router. Thus, the router forwards the traffic to

the testbed, where the traffic is delivered through the tunnel, and

we subsequently collect the traffic. We train Exosphere using am-

plification attack traffic in the public datasets [34], and deploy the

model one hour in advance of the first attack. Besides, it raises

alerts to enable defense policies of packet dropping, when detected

abnormal traffic exceeds 1.0 Mb/s, i.e., 1.0% total bandwidth.

Figure 11 plots the longitude measurement of detection accuracy.

In general, Exosphere detects various attacks with 0.980 average

AUC, and the associated F1-scores range between 0.934 ∼ 0.989.
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Table 3: Comparison of accuracy with the state-of-the-art detection systems.

Methods Metrics

HyperVision Datasets (43)
1

CIC Datasets Whisper

(13)

Kitsune

(5)

NetBeacon

(8)

Overall
Amp. Spoof. Brute. App. LFA LowR. ALL DoS2017 IDS2018 DoS2019

Whisper

AUC 0.9536 0.9888 0.9962 0.9959 0.7802 0.9849 0.9499 0.9955 0.9990 0.9970 0.9778 0.9393 0.9889 0.9673

F1 0.7060 0.4777 0.7998 0.5869 0.3516 0.1518 0.5123 0.8321 0.9176 0.8694 0.5293 0.5666 0.7743 0.6225

FAE

AUC 0.8850 0.8451 0.9969 0.9844 0.5752 - 0.8573 0.9967 0.9979 0.9966 0.6233 0.7825 0.7923 0.8416

F1 0.3826 0.1173 0.7758 0.2947 0.0597 -
2

0.6050 0.7387 0.8832 0.8415 0.2448 0.4127 0.4932 0.4547

FSC

AUC 0.9266 0.9047 0.8689 0.8696 0.8495 0.9984 0.9029 0.9476 0.9999 0.9979 0.9077 0.8929 0.9198 0.9224

F1 0.2838 0.7496 0.7045 0.6869 0.3067 0.9704 0.6169 0.8047 0.9919 0.8258 0.6728 0.5555 0.4928 0.6706

Kitsune

AUC 0.8748 0.8725 0.9172 0.9603 - 0.9445 0.9138 0.7628 0.8087 0.9564 0.8488 0.8683 0.8547 0.8765

F1 0.7456 0.4903 0.7767 0.9281 - 0.7703 0.7422 0.5455 0.6275 0.9220 0.6527 0.7083 0.7127 0.7110

nPrintML

AUC 0.9924 0.8713 0.8207 0.9913 0.9999 0.9995 0.9458 0.8791 0.9999 0.9996 0.9561 0.9987 0.9999 0.9588

F1 0.9319 0.8297 0.7569 0.9880 0.9862 0.9967 0.9148 0.8409 0.9997 0.9995 0.9020 0.9987 0.9997 0.9332

CICFlowMeter

AUC 0.6586 0.9999 0.9622 0.9891 0.9804 0.9999 0.9316 0.9790 0.9996 0.9985 0.9533 0.9925 0.9850 0.9578

F1 0.2845 0.9857 0.9217 0.9881 0.8429 0.9999 0.8371 0.9612 0.9685 0.9744 0.8776 0.9717 0.9581 0.8932

Taurus

AUC 0.9169 0.9994 0.8773 0.9963 0.7863 0.9997 0.9293 0.8593 0.9999 0.9988 0.9321 0.9882 0.9447 0.9409

F1 0.6890 0.8291 0.7793 0.9350 0.3305 0.8331 0.7326 0.7668 0.9966 0.9928 0.8021 0.9820 0.8431 0.8140

Jaqen

AUC 0.8007 0.9523 0.8633 0.9903 0.9566 0.9988 0.9270 0.9780 0.9999 0.9996 0.9702 0.9928 0.9950 0.9591

F1 0.5547 0.8759 0.7542 0.9667 0.7383 0.9756 0.8109 0.9695 0.9851 0.9992 0.9276 0.9617 0.9617 0.8922

N3IC

AUC 0.6572 0.8802 0.9796 0.9828 0.8942 0.9999 0.8989 0.8874 0.8181 0.8157 0.9275 0.9919 0.9113 0.8980

F1 0.2845 0.7496 0.9228 0.9793 0.6885 0.9999 0.7707 0.8614 0.7688 0.7662 0.8623 0.9721 0.8155 0.8103

NetBeacon

AUC 0.8492 0.8821 0.9998 0.9829 0.9520 0.9999 0.9443 0.9777 0.9960 0.9999 0.9951 0.9975 0.9927 0.9708

F1 0.5863 0.7133 0.9792 0.9793 0.7462 0.9999 0.8340 0.9658 0.9777 0.9894 0.9815 0.9666 0.9657 0.9102

FlowLens

AUC 0.9969 0.7578 0.8370 0.9281 0.9949 0.9999 0.9191 0.9907 0.9943 0.9996 0.9513 0.9968 0.9436 0.9494

F1 0.9643 0.6826 0.7226 0.8780 0.7327 0.9999 0.8300 0.9734 0.9627 0.9992 0.8620 0.9587 0.8026 0.8770

HyperVision

AUC 0.9915 0.9999 0.9953 0.9993 0.9966 0.9987 0.9968 0.9999 0.9998 0.9999 0.9223 0.7031 0.7837 0.9471

F1 0.9941 0.9999 0.9961 0.9834 0.9237 0.9988 0.9826 0.9971 0.9942 0.9991 0.7533 0.7579 0.5315 0.8987

Exosphere AUC 0.9997 0.9968 0.9990 0.9960 0.9905 0.9975 0.9965 0.9968 0.9997 0.9993 0.9970 0.9921 0.9967 0.9968

F1 0.9840 0.9604 0.9826 0.9550 0.9559 0.9671 0.9675 0.9706 0.9763 0.9699 0.9636 0.9796 0.9626 0.9686

1
The total numbers of different attack traces in the datasets.

2
These methods cannot detect such sophisticated attacks [58, 64, 71, 99].
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(a) Volumetric DDoS (SSDP).
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(b) Service specified (SMTP).
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(c) Amplification (NetBIOS).
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(d) Low-Rate TCP DoS (NTP).
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(e) Crossfire LFA (HTTP).

Figure 12: Exosphere is able to detect various attacks without requiring any confidential information in packets.

Note that, Exosphere can detect both short- and long-term attacks,

i.e., their durations range between 0.74 ∼ 35.52 minutes. Meanwhile,

it captures both high- and low-rate attacks with speeds ranging

between 0.62 ∼ 40.25 Mb/s. Besides, the performance of Exosphere
remains consistent over the long-term deployment without model

retraining, which validates its ability to adapt to concept drifting

over time [6].

We evaluate the impacts of false alert rates, a prevalent issue

in existing ML/DL-based methods [6, 97, 105]. Specifically, we

observe that Exosphere raises 3.768 false alerts per hour during

the deployment. In addition, we replay Gb-scale high-speed Inter-

net traffic on the testbed. Exosphere achieves a false alert rate of
12.68 per hour, when processing WAN traffic collected in January

2020 [109]. Therefore, Exosphere achieves manageable false alert

rates, which allow human experts to respond while not feeling over-

whelmed [28, 36, 107]. Particularly, the false alert rates are in line

with the most accurate detection methods [27, 34, 75]. For example,

the lifelong ML method [28] reduces alerts raised by DeepLog [27]

during a two-day deployment in a distributed system, such that

it requires experts to process the remaining 12.70 false alerts per

hour. Overall, Exosphere has lower false alert rates than many other

existing methods [2, 8, 33, 68].

5.3 Comparative Evaluation
In general, Exosphere is able to detect various tunneled flooding

traffic with an average accuracy of 0.996 AUC and 0.968 F1, thereby

significantly outperforming existing DNN models in multiple met-

rics. Meanwhile, it achieves comparable accuracy to existing sys-

tems with slight improvements on overall accuracy, i.e., 2.60% AUC

and 3.54% F1. Note that, unlike Exosphere, existing methods cannot

capture attack traffic in tunnels.

Comparing with Existing Systems. From Table 3, we observe

that the performance of Exosphere with regard to detecting tun-

neled flooding traffic, is at most 3.71% lower compared with the

highest accuracy achieved by the 12 existing methods when the

encrypted tunnels are disabled. Therefore, the accuracy of our de-

tection method for tunneled traffic is comparable to traditional
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detection for non-tunneled traffic. Note that, as the existing meth-

ods cannot capture tunneled traffic, we only present the accuracy

without enabled tunnels. That is, no existing method can achieve

over 0.7 AUC when detecting tunneled traffic, because the tunnels

encrypt the packet headers, which the methods rely on to extract

traffic features.

Moreover, Exosphere realizes stable accuracy across the datasets,
with slightly higher overall performance, even if existing methods

achieve higher accuracy on some particular datasets. Specifically,

Exosphere can outperform existing packet- and flow-level detec-

tion on overall performance. For instance, it achieves 3.80% AUC

improvement over nPrintML [44], a packet based detection that in-

spects each bit in packet headers. Meanwhile, it realizes 7.44% AUC

improvement over FSC flow based detection [6, 33, 35]. Similarly,

Exosphere slightly outperforms ML based methods that extract ad-

vanced features. In specific, it outperforms graph feature, frequency

feature, and statistical feature based method (i.e., HyperVision [34],

Whisper [33], and FlowLens [8]) by 4.97%, 2.95%, and 4.74% AUC,

respectively. In addition, Exosphere outperforms programmable

switch based NetBeacon by achieves 5.84% higher F1 [128]. Also,

it outperforms N3IC which installs DNNs on SmartNICs [96] by

15.83% higher F1. Besides, Exosphere exhibits higher accuracy over

rule based detection, i.e., 7.64% F1 improvement over Jaqen [68].

We further validate the improvements using five other metrics

to measure overall accuracy, i.e., it improves 4.23% Precision, 2.10%

Recall, 2.76% F2, 3.43% Accuracy, and 0.63% MCC over the best

performances achieved by the existing methods. Besides, Exosphere
has 1.72 ∼ 38.84 times lower FPR.

In summary, Exosphere achieves 0.9686 average F1 when detect-

ing tunneled flooding traffic. Such accuracy is comparable to that

achieved by the 12 traditional methods when detecting 120 types

of non-tunneled flooding traffic.

Comparing Accuracy of Detecting Various Attacks. Second,
we observe that Exosphere can detect various flooding attacks,

particularly, those stealthy attacks [53, 56, 58, 71]. Specifically, Exo-
sphere achieves 0.9550 ∼ 0.9840 F1 across 43 flooding attacks in the

HyperVision datasets [34]. These attacks include various attack vec-

tors, e.g., amplification [91], IP spoofing [40], and link flooding [58].

Similarly, Exosphere achieves an F1 score of 0.9636 for 13 attacks

in WAN datasets [33], 0.9796 for five attacks in IoT networks [75],

and 0.9626 for eight attacks in a private network [128]. Therefore,

it achieves stable accuracy across various deployment locations.

Moreover, from Figure 12(a) and 12(b), we can see that it can

detect both high- and low-rate flooding attacks. Specifically, it

achieves 0.998 AUC when detecting volumetric SSDP traffic with a

flooding rate of 35.5K packets per second (PPS). Meanwhile, Exo-
sphere realizes 0.999 AUC when detecting relatively low-rate SMTP

server targeted attacks. Such attacks generate packets at 0.727K PPS

which effectively deplete resources of SMTP servers. In addition,

we observe that it detects stealthy flooding attacks, for instance,

amplification attacks that trick NetBIOS servers into flooding mas-

sive traffic [56] (see Figure 12(c)). Similarly, Figure 12(d) shows

that it can detect low-rate TCP DoS attacks [64, 71], which con-

struct pulsing traffic to trap TCP state machines into congestion.

Furthermore, Figure 12(e) illustrates that Exosphere can capture

Crossfire LFAs [58] with 0.995 AUC. Such attacks congest critical

links to isolate ASes from the Internet by generating massive slow
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Figure 13: Ablation study: comparing existing models.
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Figure 14: Detection accuracy under existing evasion attacks.

flows (e.g. ≤ 4K PPS [58]), and thus they can evade many existing

methods [8, 75, 128].

Overall, Exosphere achieves stable accuracy ranging from 0.9905

to 0.9997 AUC across 120 different attacks with various advanced

attack techniques. The reason for such stable accuracy is that Exo-
sphere detects attacks according to the correlations of packet length
patterns, regardless of the types of flooded packets.

Comparing Existing Models and Ablation Studies. As seman-

tic analysis is also used for image segmentation [13, 61, 69], we

compare our DNN model with existing semantic analysis models.

Specifically, we adapt image models by revising the numbers of

channels, which allows these models to process the traffic features.

Figure 13(b) shows that, compared with FCN [69], SegNet [7], PSP-

Net [126], and UNet++ [130], our model achieves 15.54%, 19.23%,

3.30%, and 8.81% F1 improvements, respectively. Note that, we

omit models that require massive images for pre-training (e.g.,

DeepLab [13] and DANet [38]), because we cannot derive a con-

verged model on traffic datasets. In addition, Figure 13(a) shows that

the design of concatenation layers and up sampling contribute 1.79%

and 4.26% AUC improvements, respectively. Exosphere achieves
higher accuracy over existing models, since our architecture ex-

tracts correlations by down-sampling layers, and effectively propa-

gates the correlations by cross-layer connections.

To summarize, we validate the improvements of two key designs:

the packet embedding and the semicircular DNN architecture, i.e.,

7.03% and 19.23% accuracy improvements, respectively.

5.4 Robustness Evaluation
In this section, we validate the robustness against evasion attacks.

For this purpose, we construct adversarial examples according to
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(b) Brute force flooding.

Figure 15: Accuracy of detecting unknown attacks.
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(a) Attacks from unseen categories.
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(b) Traffic in various tunnels.

Figure 16: Detecting attacks in unseen categories and tunnels.

existing studies [33, 35, 87]. These studies developed three evasion

attacks: (i) Obfuscation: attackers inject benign TCP/UDP encrypted

traffic into attack traffic at a ratio of 1:4; (ii) Reducing sending rates:

attackers decrease their sending rates by 50%; (iii) Manipulating

traffic features: attackers mimic benign encrypted flows by manip-

ulating packet lengths according to 5.0% randomly selected benign

flows in the public traffic datasets [109]. According to the three

strategies, we generate 48 evasion attack datasets based on 16 public

flooding attack traffic datasets [34]. These settings can evade many

existing methods [8, 14, 75, 128].

Figure 14 illustrates that the evasion strategies result in mar-

ginal accuracy decreases, which are similar to existing robust traffic

detection methods [33, 34]. Specifically, the accuracy drops range

between 0.03% ∼ 0.22% AUC, and 1.87% ∼ 4.16% F1 on different

datasets (see Figure 14(a) ∼ 14(c)). Such accuracy drops are signifi-

cantly lower than existing non-robust methods, such as 35.40% AUC

decrease [33, 75], and are similar to traditional robust detection

methods, i.e., 3.67% forWhisper [35] and 4.49% for HyperVision [34].

Similarly, Figure 14(d) shows that the accuracy decreases incurred

by the three evasion strategies are bounded by 0.17%, 0.34%, and

0.03% AUC, respectively. Besides, we implement two sophisticated

evasions other than existing evasion strategies: (i) manipulating

packet rates according to 5.0% randomly selected benign flows; and

(ii) manipulating packet lengths and reducing the flooding rates by

50%. The accuracy under the evasions is reduced by 0.50% ∼ 3.28%

and 0.81% ∼ 6.14%, respectively.

In summary, Exosphere is robust against a wide range of eva-
sion strategies employed in various flooding attacks. The reason for

robustness detection is that Exosphere analyzes the time-scale distri-

bution associated with packet length patterns. The time information

assists Exosphere in detecting strong correlations of flooding pack-

ets. That is, it recognizes the similar and small send intervals pro-

duced by flooding behaviors, even if attackers inject perturbations

to the length patterns. Moreover, Exosphere effectively mitigates

the overfitting issue that plagues existing detection systems [6, 51].

Unlike complex features from packet headers [33, 44, 75], Exosphere
solely learns the length patterns to prevent overfitting issues, which

hinders attackers from constructing adversarial examples that can

easily evade overfitted models.

5.5 Transferability Evaluation
We validate that Exosphere can identify unseen attack traffic beyond

those seen during training. Specifically, we train Exosphere using
one attack, and measure the accuracy of detecting all other attacks.

Figure 15 depicts the heat map of accuracy.

We observe that the average AUC ranges between 0.931 ∼ 0.967,

when detecting brute force flooding attack datasets [34] that are not

included in training sets (see Figure 15(b)). Similarly, Figure 15(a)

shows that Exosphere achieves 0.969 AUC when detecting unseen

amplification attacks. However, in rare cases, Exosphere cannot

detect unseen attacks, e.g., traffic exploiting Memcached [40]. Our

hypothesis is that, training data of these attacks are insufficient [61].

Consequently, the associated training losses are 4.90 times higher

than normal cases leading to inaccurate detection. Moreover, Fig-

ure 16(a) illustrates that Exosphere achieves 0.901 ∼ 0.983 AUC,

when detecting attacks from entirely unseen categories.

Besides, we validate that Exosphere can capture attacks in vari-

ous different encrypted tunnels, where different cipher-suits and

encapsulating formats affect packet length patterns. Figure 16(b)

shows that it can capture traffic redirected by tunnels with various

cipher-suits (i.e., AES-GCM and AES-CBC), and achieves 0.9945

and 0.9840 AUC, respectively. Meanwhile, it achieves 0.9176 AUC

when detecting traffic in the IEEE 802.3AE link-layer tunnels.

In general, Exosphere is able to capture unseen attack traffic that

is generated by unknown strategies in various tunnels. The ability

to detect unseen attacks arises from analyzing the correlation of

packet length patterns. Specifically, we utilize DL based semantic

analysis to distinguish correlated similar packet length patterns

generated by flooding behaviors. This approach enables Exosphere
to identify a range of unseen flooding attacks by recognizing the

associated patterns of flooding behavior.

5.6 Efficiency Evaluation
In this section, we measure detection latency, throughput, and

resource usage of the software prototype, and fairly compare its

performance with existing studies on the same testbed. After that,

we analyze the hardware prototype by comparing its performance

with the software prototype.

Detection Throughput and Latency. First, we measure the de-

tection throughput of processing real-world Internet traffic. To

achieve this, we use traffic datasets [109] that are collected from a

10Gb/s optical fiber on four randomly selected dates in different

months. Moreover, we truncate packet payloads and increase the

speed of replaying to measure the throughput of the DPDK module

that extracts and embeds packet features. In addition, we conduct

offline experiments to measure the throughput of the GPU module

that performs semantic analysis, because its throughput exceeds

the capacity of our testbed. From Figure 17(a), we observe that

the DPDK module process packets that deliver 8.30 ∼ 9.95 million

packets per second (MPPS). Meanwhile, Figure 17(b) illustrates that

the average throughput of semantic segmentation performed by
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(b) Semantic segmentation module.

Figure 17: Throughput of processing real-world traffic.
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Figure 18: Latency analysis of processing real-world traffic.

FAE
Whisper

Samp. H.V. Ours
0.00

0.25

0.50

0.75

1.00

La
te

nc
y 

[s
]

Latency

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 [M

PP
S]

Throughput

(a) Latency / throughput.

0 50 100 150 200 250
Average Latency [ms]

0.00

0.01

0.02

0.03

0.04

Pr
ob

ab
ili

ty
 D

en
si

ty Whisper   :  90.51 ms
Exosphere:  41.56 ms

(b) Comparing feature extraction.

Figure 19: Comparing performances with existing methods.
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Figure 20: Comparing performances of DNN models.

the GPU module ranges between 18.54 ∼ 19.06 MPPS. Thus, the

bottleneck of our system is the packet processing capability of the

DPDK module, due to limited CPU resources.

Second, we measure the latency of Exosphere. From Figure 18(a),

we find that the overall latency ranges between 46.30 ∼ 52.67 ms.

Meanwhile, Figure 18(b) illustrates that the DPDK module incurs

42.40 ms latency, which is higher than the latency of the semantic

segmentation on GPU (5.73 ms). Overall, Exosphere achieves both
high-throughput and low-latency detection.

Efficiency Comparison. Third, on the physical testbed, we fairly

compare the efficiency of Exosphere with existing realtime detec-

tion methods. Figure 19(a) illustrates that the throughput of Exo-
sphere is 6.191, 6.190, 4.644, and 2.330 times higher than FAE [33],

HyperVision [34], Whisper with and without sampling [35], re-

spectively. Meanwhile, it can reduce 8.77% ∼ 94.24% detection la-

tency. The reason why Exosphere realizes lower latency and higher

throughput is that, it avoids extracting complex packet header fea-

tures. Instead, it measures packet lengths, which incurs only 45.91%

latency compared to Whisper, as depicted in Figure 19(b).
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Figure 21: Hardware performances with different𝑊 (𝑄 = 5).

Finally, we compare the efficiency of our DNN model with exist-

ingmodels. Figure 20(a) illustrates that ourmodel improves through-

put by 53.67%, 52.81%, and 109.08% over SegNet [7], PSPNet [126],

and UNet++ [130], respectively. Meanwhile, it reduces 34.22% ∼
51.89% latency over these baselines. Moreover, we observe that the

parameter scale of our model is 4.43 ∼ 52.72 times lower than ex-

isting models. As a result, the memory consumption of Exosphere
is obviously lower than the model with similar performance (e.g.,

FCN [69]). Besides, Figure 20(b) illustrates that the convolutional

layers incur 3.418 times higher latency than the other layers.

Hardware Performance. We analyze the hardware prototype of

Exosphere on three FPGAs with different𝑊 and 𝑄 . Due to con-

straints of hardware [96, 100], we replace the stacked convolutional

layers with a 16-bit integer based convolutional layer. Moreover,

we fix 𝐷 = 2 to implement a shadow DNN model with four convo-

lutional layers. Besides, we replicate many instances of the model

to improve performance.

We analyze the latency, throughput, and resource usage through

EDA tools [116, 117], ensuring precision of the obtained results.

Figure 21 illustrates the performance with different𝑊 . From Fig-

ure 21(a), we find that Exosphere achieves 8.928 MPPS throughput

on the Zynq-7000 chip [118]. Meanwhile, it realizes 57.34 us la-

tency when𝑊 = 10, which is 807.40 times lower than the software

prototype. Note that, the hardware constraints inevitably lead to

accuracy drops, i.e., 2.71% AUC drop and 0.56% F1 drop (when

𝑊 = 10, see Figure 21(b)). We observe that the increase in accuracy

with respect to𝑊 is not monotonic. This pattern may be attributed

to overfitting issues that arise in larger DNNs as𝑊 increases. In

addition, Figure 21(c) illustrates that, by replicating many instances,

Exosphere achieves 18.69 ∼ 61.87 MPPS on the Kintex-7 chip [112],

which is 2.251 times higher than the software prototype. Moreover,

the Virtex-7 [115] allows us to achieve 170.45 MPPS, which is com-

parable to programmable switches based methods, e.g., 99.18 Gb/s

by NetBeacon [128]. Such throughput also outperforms SmartNIC

based methods, e.g., 18.10 MPPS by N3IC [96].

6 DISCUSSION
Inability of Filtering Tunneled Traffic.We validate that com-

mercial cloud based traffic detection cannot filter traffic delivered

by existing tunneling services. Specifically, we subscribe to tunnel-

ing services from Azure (UK South) and Tencent Cloud (Frankfurt,

DE) to establish a 3.0 Gb/s IPSec tunnel between the two networks.

Meanwhile, we purchase traffic detection services from Tencent

Cloud [21], which allow for setting significantly lower thresholds

(minimum 1.0 Mb/s) compared to other services [5, 18], thereby

eliminating the impacts of our experiments. Afterward, we establish

servers in each of the two networks and transmit packets between
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the servers through the tunnel at low speeds, i.e., sending TCP SYN,

TCP RST, and NTP packets at 1.59 Mb/s, 1.58 Mb/s, and 1.92 Mb/s,

respectively. After setting filter thresholds below these speeds, we

observe that the detection rules fail to filter the tunneled traffic.

Furthermore, we conduct similar experiments with OpenVPN tun-

nels [48, 73], which confirms that tunneled traffic can evade existing

detection techniques.

The reason is that, existing detection systems inspect ingress

traffic either at border routers [5, 19–21, 74] or at edge networks [1,

23]. However, by the time attack traffic reaches these locations, it

has already been encrypted in subnets at tunnel gateways or end

hosts. Such encryption conceals packet features and allows the

traffic to evade the detection.

Detecting Other Network Attacks. Exosphere is capable of de-
tecting flooding behaviors of other network attacks. Since these

attacks exhibit unique packet length patterns which are signifi-

cantly correlated. For example, stealthy probing traffic generated

by side-channel attacks [12, 31] exhibits regular packet patterns,

which allow Exosphere to detect such attacks with over 0.919 AUC.

Similarly, it can detect spam traffic [83] with 0.984 ∼ 0.994 AUC.

We consider generic network attack detection via deep learning

based semantic analysis as future works [123].

Adversarial Machine Learning. On the one hand, in Section 5.4,

we validate that inference phase attacks cannot evade our detection,

because we utilize time-scale information to improve robustness

against adversarial examples [24, 33, 87, 94]. On the other hand,

training phase attacks are not practicable. Since for training the

model, we use real-world Internet traffic datasets [34, 109, 128]

that contain hundreds of millions of packets. As a result, it is hard

for attackers to manipulate even a small minority of traffic in the

training datasets.

Issues in ML Based Systems. We rigorously evaluate Exosphere
according to the literature on analyzing ML systems [2, 6, 51, 97].

First, we use various parameters, metrics, and datasets to prevent

biased experiment settings [6]. Second, unlike existing methods [8,

14, 128], we do not extract many complex features for detection,

which mitigates issues related to overfitting traffic features [51].

7 RELATEDWORK
ML Based Traffic Detection System. For generic traffic detec-

tion, many existing methods learned flow-level features, e.g., fre-

quency features [33], distribution features [8], and statistical fea-

tures [14]. Particularly, NetBeacon [128] installed tree models on

programmable switches, which is similar to SmartNICs based detec-

tion [85, 96, 100]. Different from flow-level detection, Kitsune [75]

and nPrintML [44] learned per-packet features. Moreover, Hyper-

Vision built graphs to detect encrypted traffic [34, 37]. For task

specific detection, existing studies detected different behaviors of

malware [10, 26, 50]. Bartos et al. [9] and Tang et al. [101] detected
maliciousWeb traffic. Dodia et al. [26] detected malicious Tor traffic

via flow-level features. Moreover, Sharma et al. [92] and Tekiner et
al. [102] captured attack traffic targeting IoT devices.

False Alert Issues of Traffic Detection. Existing studies reduced

false alerts raised by traditional methods, allowing human experts

to respond without being overwhelmed. For example, pVoxel an-

alyzed alerts in the traffic feature space [36] to reduce alerts for

HyperVision [34] triggered by flooding traffic, resulting in 14.88

alerts per hour requiring manual analysis. Similarly, the lifelong ML

based method [28] required human experts to process 12.70 false

alerts per hour. Moreover, explainable AI based techniques [43] re-

duced 94.92% false alerts and required 39.85 false alerts for manual

analysis per hour. The false alert rate of Exosphere is below the

processing overheads, which means that it does not significantly

suffer from false alert issues.

Moreover, recent studies explored issues related to false alerts.

Sommer et al. emphasized the importance of limiting false alerts.

Arp et al. examined false alert issues of various ML based secu-

rity applications. Alahmadi et al. revealed that 99% alerts are false

alerts in security operation centers (SOCs). Vermeer et al. identified
the false alert issues as a key challenge in deploying traffic detec-

tion [105]. We consider further reducing false alerts, e.g., using

dynamic thresholds, as future work.

Flooding Attack Defense System. These systems throttle iden-

tified flooding traffic by fixed rules. Traditional methods lever-

aged SDN for flexible rule deployment [30], and realized LFA de-

fense [59, 127]. Recent studies implemented defense primitives on

programmable switches to support complex defense behaviors, e.g.,

Poseidon [125] on Intel Tofino switches. Similarly, Jaqen [68] uti-

lized sketch data structures to scale up the inspection of flows.

Mew [129] employed distributed SRAM to further enhance the scal-

ability of defense. Additionally, ACC-Turbo leveraged congestion

control methods to mitigate pulsing attacks [3]. Ripple, a distributed

defense strategy, aims to mitigate LFAs [119]. Additionally, many

practical defenses were developed for traditional forwarding de-

vices, e.g., BGP based defense [104] and IXP-level collaborative

defenses [106, 108]. Other works analyzed the effectiveness of the

defense. Xu et al. [120] suggested utilizing historical information.

Li et al. [67] analyzed benefits of defense via game theory.

Stealthy Flooding Attack. Advanced attacks enhanced stealth-

iness by exploiting vulnerabilities. First, LFA exploited network

topologies [99], e.g., the Crossfire attacks congested low-capacity

links to separate ASes from the Internet [58]. Second, amplification

attacks exploit public services, using slight traffic to trigger massive

attack traffic [91]. For example, Li et al. [66] utilized HTTP range

requests enabled by CDNs. Bock et al. [11] tricked TCP middle

boxes into amplifying traffic. Gbur et al. [39] used QUIC servers as

amplifiers. Moreover, Krupp et al. [63] and Moon et al. [76] devel-
oped fuzzing methods to construct the attacks. Third, many attacks

leveraged protocol vulnerabilities. For example, pulsing traffic can

congest TCP state machines, namely, pulsing attacks [64, 71]. Guo et
al. [42] and Jero et al. [54] enhanced the practicality of the attacks.

Flooding Attack Measurement. A series of studies profiled be-

haviors of DDoS campaigns. From the view of victims, Jonker et
al. [55] measured the adoption of CDN based DDoS defense as well

as BGP blackholing defense [57]. Moura et al. [78] analyzed the im-

pacts of DNS amplification attacks, which is similar to the analysis

from ISPs [98]. From the view of attackers, Rossow et al. [91] used
darknet to measure amplification attack traffic. Jonker et al. [56]
revealed traffic features of flooding traffic. Nawrocki et al. [80]
analyzed traffic patterns of DNS based attacks. Kopp et al. [62] ana-
lyzed traffic from DDoS-as-a-Service platforms. Moura et al. [79]
observed DDoS triggered by misconfigurations. Griffioen et al. [40]
characterized steps of DDoS campaigns.
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8 CONCLUSION
In this paper, we develop Exosphere, a system that examines the

patterns observed in packet lengths to capture tunneled attack

traffic, without requiring any information in packets. Specifically,

it classifies attack packets according to deep learning synthesized

semantic features, i.e., the features represent the strong correlations

between flooding packets with similar length patterns. We conduct

experiments with an FPGA prototype and datasets including 120

different attacks. The results demonstrate that Exosphere achieves
0.968 F1 which significantly outperforms existing deep learning

models. Moreover, it achieves accuracy comparable to 12 existing

systems that lack the ability to detect attack traffic in the tunnels,

while also improving their throughput by 6.19 times. Additionally,

it retains accurate detection under evasion attacks and has captured

unseen attacks in a real-world deployment.
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