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Abstract— The first-frame delay is an essential indicator for
evaluating the performance of cloud CDN vendors and affects the
client-side QoE of live streaming. Instead of the traditional way
of tuning the initial congestion window (cwnd) for all connections
to a fixed value based on expert experience, this paper explores
the using of transport signals unique to each connection (e.g.,
application-layer framing, historical QoS metrics) to initialize the
sending parameters for each connection. Thus we propose Wira, a
first-frame optimization mechanism that adjusts both initial cwnd
and initial rate, which are two key parameters for decreasing the
first-frame completion time (FFCT). Particularly, Wira provides
cross-layer Frame Perception that parses frames and adapts the
initial cwnd to the first-frame size. Meanwhile, Wira introduces
the Transport Cookie to enable cloud-client collaborations, in
which the historical QoS metrics from the clients can be reported
and reused by rate initialization in the stateless cloud. This
assures the initial rate matches the actual network conditions
while avoiding non-trivial storage overhead in the cloud. We
implement Wira upon QUIC and evaluate it via real-world
deployments of commercial services. Results demonstrate the
profitability of Wira, in which the average and 90th-percentile
FFCT are reduced by 10.6% and 16.7%, respectively.

Index Terms—Transmission Control, First Frame Optimiza-
tion, Frame Perception, Transport Cookie

I. INTRODUCTION

The live-streaming services have become a critical part of
our lives [1], [2], whose first-frame delay reflects the client-
side waiting time from sending out the request packet to
displaying the first screen. For example, the TikTok Live
users served by our provided CDN service in Southeast Asia,
have to wait 200ms∼400ms for the first-frame streaming. This
delay is always regarded as an essential metric to evaluate
the performance of CDN vendors, whose larger value will
deteriorate the quality of experience (QoE) and decrease the
revenue of both application providers (e.g., Twitch and TikTok
Live) and CDN vendors (e.g., Amazon AWS and Google
Cloud). By contrast, if the incurred first-frame delay is larger
than the threshold (e.g., 1s) that is declared by application
providers, the live-streaming users tend to leave the live room
or even close the application.
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The existing schemes primarily emphasize the development
of improved control policies to reduce the first-frame comple-
tion time (FFCT). Specifically, the focus is on setting up the
correct congestion window (cwnd), with particular emphasis
on its initial value (init cwnd), to enhance the sender-side
responses during the startup phase [3]–[8]. However, these
approaches employ fixed parameter settings for all users,
failing to adapt to the diversity of first-frame sizes (FF Size),
which vary from 6KB to 250KB based on our comprehen-
sive measurements (§II-A). Generally, a smaller init cwnd
may introduce more Round-Trip Time (RTT) for the first-
frame delivery, while a larger one can trigger congestion due
to increased in-flight traffic data. Besides, these approaches
overlook the significant impact of the pacing rate on FFCT,
despite the proven benefits of pacing-based congestion controls
such as BBR [9], TIMELY [10] and Copa [11]. In this paper,
we argue that the initial pacing rate (init pacing) should
also be carefully configured for the FFCT optimizations, as
evidenced by our testbed experiments(§II-B). For example,
a higher init pacing can lead to unacceptable packet losses,
thus elongating the time required for successful recovery [12],
[13]. Based on these observations, we infer that a finer-grained
initialization of both cwnd and pacing rate is essential for
minimizing first-frame delays.

To set parameters dynamically, some solutions employ
user-group divisions and train machine-learning (ML) based
models for each user group [14]–[24]. The central concept
is to treat the network condition of the entire group as the
condition encountered by each user within the group. However,
we argue that these ML-based ways are coarse-grained and
costly. First, the FF Size of each flow varies within a user
group. ML-based solutions face challenges in achieving per-
flow parameter configurations due to the unknown FF Size.
Second, the group-based Quality of Service (QoS) estimation
is less than ideal (§II-C). This is because a QoS metric (e.g.,
minimum RTT) of the whole user group only reflects the
overall level of samples. Our large-scare measurement study
has shown that the historical QoS (Hx QoS) metrics, such
as the minimum RTT and the maximum available bandwidth
measured in the last connection between the same origin-
destination (OD) pair, have a much lower dispersion degree
than the group-based QoS metrics (§II-D). Thus, for a specific
OD pair that is generating a new flow, Hx QoS is more worthy
of reference than the group-based QoS. Third, the frequently-



leveraged ML model, for each user group [15], will introduce
non-trivial overhead (e.g., higher CPU load), especially when
facing a large number of user groups (e.g., 8000+ in Brazil
[25]), which also limits the real deployability of these methods.

Some transport signals unique to each connection including
FF Size [26], [27] and Hx QoS [28], [29] can be utilized
for initializing sending parameters for each connection. In
this paper, we propose Wira1, a first-frame optimization
mechanism that combines both FF Size and Hx QoS to enable
effective initializations for cwnd and pacing rate. In particular,
init cwnd is set by referring to the actual FF Size while
the init pacing is configured based on OD-pair’s Hx QoS.
However, to achieve the mentioned initializations, several
challenges that cannot be ignored should be addressed, as
follows. First, the transport layer does not have awareness
of the specific information at the application layer. As a
result, the current transport protocols do not inherently support
the awareness of FF Size. Second, maintaining the Hx QoS
records in the cloud (sender) for each OD pair would result in
excessive overhead, making it impractical to quickly retrieve
this information for initializing the pacing rate. Third, it will
deteriorate the FFCT if the parameter initializations, such as
initializing cwnd according to FF Size and initializing pacing
rate according to Hx QoS, are not carefully handled.

The means of Wira to address the aforementioned chal-
lenges are also divided into corresponding three steps. First,
Wira introduces the Frame Perception (FP), a cross-layer
scheme that identifies the first frame and gets FF Size before
delivering it to the sending module (§IV-A). Second, For
fast Hx QoS acquisition without incurring non-trivial storage
overhead, Wira proposes the Transport Cookie (TC), a cloud-
client collaboration scheme that synchronizes Hx QoS be-
tween the stateless cloud-side server and its user-side clients.
Particularly, during the connection establishment, the client
reports the desired Hx QoS in the handshake packets (§IV-B).
Third, once obtaining FF Size and Hx QoS, the sending
module of Wira will regard them as essential signals for
initializing both cwnd and pacing rate. The main objective is
to ensure that the first frame can be successfully transmitted
without causing excessive congestion or packet losses. This
is achieved by configuring the init cwnd parameter to an
appropriate value and adapting the init pacing rate based on
the available bandwidth in Hx QoS (§IV-C).

The contributions are summarized as follows.
• We construct large-scale measurements and testbed exper-

iments that demonstrate both init cwnd and init pacing
should be highly required for per-flow’s FFCT.

• We propose a first-frame optimization mechanism named
Wira that can combine both FF Size and Hx Qos to
achieve more appropriate initialization for cwnd and
pacing rate.

• We introduce accurate cross-layer perceptions, whose
frame parser implemented in L4 can identify the first
frame and get its size. Besides, a lightweight collabo-

1Wira is named after initializing window and rate, simultaneously.
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Fig. 1. Diverse first-frame sizes in our measured live streams.
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(b) FFCT vs. init pacing.

Fig. 2. FFCT varies with init cwnd and init pacing.

ration scheme is designed for quickly obtaining Hx QoS
without incurring non-trivial overhead at the sender side.

• We implement Wira prototype upon QUIC protocol [30],
[31] and evaluate it through real-world deployments for 6
months. The experimental results show the average and
90th-percentile FFCT values can be lowered by 10.6%
and 16.7%, respectively. Besides, the first-frame loss rate
can be reduced from 8.8% to 6.4%, on average.

The remainder of this article is organized as follows: In §II,
we describe the motivation through our performed large-scale
measurements and testbed experiments. Then, the overview
and design details of out proposed Wira are depicted in §III
and §IV, respectively. §V discusses the implementation and
§VI shows the experimental evaluation. Then §VII discusses
the transport cookie security and the first-frame playback
conditions. §VIII gives an overview of related works. Finally,
§IX concludes the paper.

II. MOTIVATION

In this section, we motivate Wira based on our performed
testbed experiments and large-scale measurements in the real
product network.

A. Diverse First-Frame Sizes Require Dynamic Initial Cwnd

Due to varying resolution ratios of different live streams, the
FF Size of different live streams is generally different. Addi-
tionally, within the same live stream, the live video picture
changes over time, and the complexity of the picture affects
the size of the video frame. Therefore, even when requesting
play of the same live stream at different times, the FF Size
may vary. To better explore the actual FF Size, large-scale
measurements have been performed, which collected 100+
million streams of a famous live platform that is supported
by our CDN service. Fig. 1(a) shows the obvious difference
of inter-stream FF Size with the average value of 43.1KB.
Besides, 20% live streams (i.e., 80th-percentile value) hold
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Fig. 3. The differences of MinRTT and MaxBW within the same UG.

the first-frame size of >60KB compared to <30KB in 30%
live streams. Meanwhile, we also make testbed experiments,
in which the requested live stream can be pulled from our
live CDN and then will be transmitted to another server.
We find the FF Size (even in the same live stream) always
changes at different viewing timestamps. Fig. 1(b) depicts the
actual FF Size values when we view some live stream every
5s, which range from 45KB to 130KB. This is affected by
the complexity of the first-frame picture. Fig. 2(a) shows the
FFCT of some live stream with the FF Size of 66KB in our
performed testbed experiment2. We can learn a smaller value
(e.g., 4 and 10) will incur larger FFCT as more transmission
RTTs are incurred while the larger ones (e.g., 80 and 100)
can suffer from non-trivial packet losses due to network
congestion. By contrast, the init cwnd that is adapted to the
FF Size (i.e., init cwnd = 45) will gain much better FFCT.
Therefore, the actual cwnd should be dynamically initialized
as the diversity of inter-/intra-stream FF Size values.

B. Simultaneously Adjusting Initial Rate and Initial Window
Helps

The pacing rate is also regarded as a significant indicator
for high-performance transmissions while only configuring
init cwnd is far away from enough, in which an affable
init pacing can achieve much better first-frame optimization.
Fig. 2(b) shows the FFCT under various init pacing con-
figurations, which is based on our performed 1000 testbed
experiments with init cwnd = FF Size. We can learn both
the smaller and the larger init pacing values can all result
in unsatisfied FFCT while the configured value that adapts
to the maximum available bandwidth (MaxBW) can introduce
much better FFCT. For example, the init pacing with 0.8Mbps
and 4Mbps can introduce the FFCT of 302ms and 186ms,
respectively. However, the employed 16Mbps and 40Mbps will
both incur the FFCT of 210ms+ and the loss rate of >40%. By
contrast, 8MBps init pacing that adapts to MaxBW can result
in a much lower FFCT (i.e., 157ms) with a smaller loss rate
(i.e., 3.8%). Therefore, the pacing rate should also be carefully
initialized for further optimizing our focused FFCT.

C. User-Group Modes Cannot Accurately Control Each Flow

Even though user group (UG) oriented schemes (including
their ML solutions) can be leveraged to optimize grouped

2In this testbed experiment, the network condition is configured as 8Mbps
bandwidth, 3% loss rate, 50ms RTT and 25KB network buffer.
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Fig. 4. The differences of MinRTT and MaxBW of the same OD pairs.

connections (in §VIII), these methods fail to achieve more
fine-grained controls for each flow. On the one hand, their
enabled init cwnd configurations are based on the measured
network QoS, which cannot well adapt to the diverse FF Sizes
in §II-A. On the other hand, the actual network conditions
in the same UG still present obvious differences that can be
learned from our real-network measurements. In this paper,
we employ coefficient of variation (CV) [32], as formula 1
shows, to depict the differences between the actual values of
some QoS metric (e.g., MinRTT and MaxBW).

CV =
1

N · vavg
·

√√√√ N∑
i=1

(vi − vavg)2 (1)

where N is the amount of live-streaming connections, and vi
(vavg) represents the (average) value of some QoS metric. As
Fig. 3 shows, the average CV values (within 5mins) of both
MinRTT and MaxBW of 1000+ UG3 in Southeast Asia are
36.4% and 51.6%, respectively.

Besides, ∼50% MinRTTs have already become >20.0%
while only 12.8% MaxBW values introduce 20.0%. This also
shows the UG-based network estimations cannot accurately
reflect the actual transmission quality between the sender
and some receiver, especially compared to the Hx QoS mea-
surements in §II-D. Thus, initializing the pacing rate for all
connections that belong to the same UG is not enough for
optimizing FFCT. In addition, UG-powered control schemes
might become impracticable, especially when the UG amount
becomes intolerable (e.g., over 8000 UGs in Brazil [25]). In
this case, deploying a DRL model for each user group will
introduce huge overhead (e.g., higher CPU load), which will
affect the stability of the CDN servers. Besides, the live-
streaming traffic in the top 10 UGs only accounts for 11%,
lacking finer-grained controls for each flow. Therefore, the
UG-based or ML-powered solutions cannot be well scaled out
in the real product network.

D. Network QoS Performs Similarly with The Same OD Pair

The Hx QoS with the same OD pair outperforms UG-
based network estimations. To further explore the Hx QoS,
we make large-scale measurements for over 10 million live-
streaming connections with the same OD pair, in which the

3Two users will be divided into the same UG if they have the same network
type (e.g., WIFI, 3G, 4G, and 5G), geographic location (i.e., country, province
and city) and AS number.
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client-side network type such as WIFI, 4G, and 5G has been
considered. Fig. 4 shows the OD-pair CV values in terms
of both MinRTT and MaxBW with different time intervals.
We can learn the following observations. (i) The MinRTT
metric of the same OD-pair session will become slightly
differentiated when the time interval tends to become larger.
As Fig. 4(a) shows, the average MinRTT CV values are 9.9%,
10.2%, 10.5%, and 11.2% under the time intervals (min) of
(0, 5], (0, 10], (0, 30] and (0, 60], respectively. (ii) A high
proportion of MinRTTs does not show significant changes
under different time intervals. Within 5-min interval, ∼80%
connections with the same OD pair keep the MinRTT CV
metric of 13.9% while the MinRTTs of ∼80% connections
can still keep insignificantly-changed (i.e., CV = 16.0%) with
the interval of (0, 60]. (iii) Compared to MinRTT, the MaxBW
exhibits significant differences, whose 50th-percentile CV has
exceeded 22.6%, as Fig. 4(b) shows. (iv) We also find that both
MinRTT and MaxBW of the same OD-pair connections are
stable compared to the values in the same UG. For example,
the average MinRTT and MaxBW CV values are 9.9% and
27.0% within the intervals of 5 minutes, whose changing
rates are lower than 36.4% and 51.6% which are shown in
the same UG. Therefore, the Hx QoS within the same OD
pair can reflect the realistic network condition more accurately
compared to the UG-based network estimations.

III. OVERVIEW

In this section, we will provide high-level descriptions of
Wira that aim to optimize the FFCT of live streaming by fully
considering both FF Size and Hx QoS.

This paper proposes Wira that can take both FF Size and
Hx QoS into full consideration for the first-frame optimiza-
tions of large-scale live streaming, which can be shown as
Fig. 5. In particular, more fine-grained transmission controls
for per-flow initialization can be realized by carefully config-
uring the initial parameters based on FF Size and Hx QoS.
Concretely, Wira refers to the actual FF Size and enables more
appropriate init cwnd, in which fewer RTTs will be required
for first-frame deliveries. For better pacing the first frame, Wira
senders leverage Hx QoS for initializing the sending rate that
adapts to the real network conditions. To optimize per-flow’s
first frame, Wira should follow the next design principles for
further lowering the FFCT of live streaming.

Algorithm 1: First-frame parsing pseudo code.
Input: Live streaming
if FF Complete then

return -1;
end
Obtain PtlType;
if PtlType ̸∈ PtlSet then

return -1;
end
Obtain HeaderLen;
FF Size = HeaderLen;
FF Size += PreviousTagSizeLen;
NumVF = 0;
for each frame do

Obtain FrameType;
Obtain FrameSize;
if FrameType is Video then

NumVF++;
end
FF Size += FrameSize;
FF Size += PreviousTagSizeLen;
if NumVF == ΘVF then

FF Complete = 1;
return FF Size;

else
continue;

end
end

• Principle 1: The init cwnd should adapt to the actual
FF Size. The smaller init cwnd will consume more
RTTs to complete the first-frame delivery while the larger
one might cause a more congested transmission path due
to incurring excessive in-flight packets.

• Principle 2: The init pacing should match the real net-
work conditions. The proper init pacing can efficiently
transmit the first frame to its client, whose smaller value
will slow down the delivery while the larger one can
introduce non-trivial packet losses that require extra time
for their recoveries.

However, the following challenges are still faced when
utilizing both FF Size and Hx QoS for optimizing per-flow
FFCT. (i) L4 keeps agnostic to FF Size due to lacking the
ability to parse live streaming that is to be transmitted, in
which the fixed init cwnd cannot cover the diverse FF Size
(§II-A). (ii) The Hx QoS is hard to gain or store locally
on traffic senders for configuring highly-required init pacing
(§II-B) because the non-trivial storage overhead will be in-
troduced, especially facing millions of live streams. (iii) The
initialization should be carefully performed for both init cwnd
and init pacing as some negative effects (e.g., larger loss rate
and RTT) will be incurred if some parameter has not been
better configured.

To address the mentioned-above challenges, Wira supports
accurate cross-layer perceptions, in which the frame parser is
designed and implemented in L4. In this case, the FF Size can
be obtained before it has been transmitted (§IV-A). For effi-
ciently estimating the cold-start transmission condition, Wira
introduces a lightweight client-cloud collaboration scheme that
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enables each request packet to carry historical information of
the last sessions, further offloading server-side storage over-
heads (§IV-B). To better configure the initial parameters for
each live streaming, Wira enables more appropriate init cwnd
based on its parsed FF Size while initializing init pacing
according to its obtained Hx QoS (§IV-C).

IV. DESIGN DETAILS

In this section, we will describe the design details of
Wira that support cross-layer frame parsing, stateless transport
cookie, and sending parameter initializations, as Fig. 9 shows.

A. Frame Perception

To obtain the desired FF Size and achieve per-flow’s con-
trol, Wira introduces a parsing module that enables accurate
cross-layer perceptions in L4, which can identify the first
frame as well as its size. The reason why we chose to perform
frame perception in L4 is that it allows us to obtain the
first-frame size without modifying any L7 applications that
attempt to configure the initial window based on the first-frame
size. In other words, Wira is transparent to the upper-layer
applications. Figure 6 depicts the sketch of parsing module that
is implemented in L4. When receiving a request packet from
some client, the traffic sender will fetch one or more Group of
Pictures (GOP) of the requested live streaming, which contain
I, P, B, and other (e.g., audio and script data) frames4. Then,
these fetched frames will be input into the parsing module
before they are sent out. Finally, the desired FF Size will
be output to the sending module (described in §IV-C). The
parsing process is as Algorithm 1 shows.

When receiving a live stream, the Wira parser will firstly
determine whether the FF Size obtaining has been completed
based on FF Complete, which is initialized to 0 once receiving
a new request packet and changed to 1 when FF Size has
been output. Only FF Size = 0 can Wira sender perform
the following frame parsing, which is also leveraged for
identifying the current frame that belongs to our focused first
frame. Then, the type of live-streaming protocols (PtlType),
e.g., Flash Video (FLV), HTTP Live Streaming (HLS), and
Real Time Messaging Protocol (RTMP), will be identified,
which is required as different fields are located in their header
and body structure. For example, if the signature on the
protocol header is ‘FLV’, the parsing module will perform
frame parsing based on the existing FLV structure. Next, Wira

4Actually, presentation timestamps (PTS) of these frames are actually
earlier than the receiving time of this request packet so that enough frames
can be transmitted without suffering from more application limitations.

Client Server Server Cache

Time Time Time

Client Cache Client Server

Time Time Time

(a) Web Cookie (b) Transport Cookie

Fig. 7. The analogy between Web Cookie and Transport Cookie.

parser will accumulate the size of live-streaming data until
the number (NumVF) of parsed video frames has reached its
threshold ΘVF that is set to 1 (by default).

In this paper, Wira parser regards some video frames as the
end of the first frame, so that the size of previous information,
e.g., protocol header, audio frame, and script data, will be
considered as part of FF Size. This is because they are also
critical for successfully displaying the first frame on the
client side. Take a live stream in the real network as an
example. When receiving a request packet, the traffic sender
will sequentially transmit script data, audio, an I frame, a P
frame, and three B frames to its client, whose sizes are Sscript,
Saudio, SI, SP, SB1, SB2 and SB3, respectively. In this case,
FF Size = Sscript + Saudio + SI when ΘVF = 1, whose value
will become Sscript + Saudio + SI + SP + SB1 when ΘVF = 3. The
presented Wira enables more appropriate init cwnd by taking
the parsed FF Size as a vital transport signal for first-frame
optimizations (§IV-C).

B. Transport Cookie

Wira regards the last session’s Hx QoS of the same OD
pair as essential transport signals for initializing control pa-
rameters. In particular, Wira introduces a cookie module
that supports stateless transport cookie acquisition, in which
the newly-measured Hx QoS of current live streaming will
be periodically synchronized (as transport cookie) from our
Wira server to its clients. Besides, Wira enables its clients
to insert the obtained Hx QoS metrics into the handshake
packets, which can be quickly extracted by Wira server during
their connection establishment in the future. Thus, Hx QoS
can be fully considered for first-frame optimizations without
introducing non-trivial storage overhead on the server side.

The presented transport cookie can result in the following
benefits, which operate on a similar principle to the existing
web cookie [33], [34], as Fig. 7 shows. On one hand, network
QoS metrics (e.g., MinRTT and MaxBW) can be synchronized
in the transport cookie, which can help the server configure
initial transmission parameters more appropriately. On the
other hand, different from the web cookie, the transport cookie
allows the Wira server to offload the collected Hx QoS to the
cache of its clients, which greatly reduces the storage and
retrieval pressure on the server.

To achieve the above stateless transport cookie, Wira de-
signs and implements a client-server collaboration scheme and
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its packet format upon user-space QUIC protocol, as Fig. 8
shows, in which the interaction process is as follows.

Collaboration declaration. Wira enables each handshake
stage to declare whether the client supports Hx QoS synchro-
nization in the follow-up live-streaming transmission. This can
be realized by adding a new tag (called HQST) in the CHLO
packet of QUIC , as Fig. 8 shows. The field TagLen depicts
the length of newly-created HQST while the field Bool = 1
reflects this client support Hx QoS synchronization in this
live-streaming connection.

Periodic synchronization. When receiving a CHLO packet
with Bool = 1, the Wira sender will periodically transmit its
collected network QoS (e.g., MinRTT and MaxBW) of the
current connection to its client. Unless otherwise declared,
the synchronization period is set to 3s. To achieve the above
operation, Wira introduce Hx QoS packet that is built on
the QUIC protocol, as Fig. 8 shows, whose “type” is set
to 0x1f that can differentiate the existing values in QUIC.
In particular, a new frame (called Hx QoS frame) is carried
in this Hx QoS packet, which contains one or more <HxID,
HxLen, Hx QoS Value> triples. Note that HxID and HxLen
are the identification and the length of each Hx QoS tuple,
respectively, whose value is shown in the Hx QoS Value
field of Hx QoS packets. In Wira, the clients will extract the
newly-introduced Hx QoS frame from their received Hx QoS
packets and then update Hx QoS metrics stored locally.
Meanwhile, the timestamp is also recorded when receiving
an Hx QoS packet, which will be carried in the next CHLO
packets. Therefore, the Wira sender is not required to save
these Hx QoS values for each OD pair by offloading this non-
trivial storage overhead to its clients.

Lightweight Hx QoS obtaining. The proposed Wira
enables its sender to quickly obtain the last session’s Hx QoS
metrics with the same OD pair, which is carried in the
Hx QoS Frame field of the CHLO-packet HQST tag. Con-
cretely, the Hx QoS Frame will keep available only when
Bool = 1 and the TagLen is larger than the sum of sizes
of TagID, TagLen and Bool. In Wira, the Hx QoS Frame
can be encrypted using the sender-side symmetric key, which
cannot be decrypted on the receiver side. This can also prevent
the measured Hx QoS metric from being eavesdropped by
unreliable clients and man-in-the-middle attacks [35].

In Wira, the required Hx QoS metrics include MinRTT
and MaxBW that have been demonstrated not to change
significantly (§II-D), especially compared to UG-based net-
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Fig. 9. Wira-powered parameter initialization.

work estimations (§II-C). Besides obtaining the last session’s
MinRTT and MaxBW from CHLO packets, the introduced
cookie module also keeps collecting network QoS metrics
over some time and periodically delivers them to the sending
module that will construct Hx QoS packets and synchronize
them with the client. The synchronized Hx QoS is used by the
Wira sender to configure more appropriate init pacing before
the first frame is sent out (§IV-C).

C. Initial Parameter Configuration

Wira enables the sending module to regard the obtained
transport signals (i.e., FF Size in §IV-A and Hx QoS in
§IV-B) as an essential reference for initializing both cwnd
and pacing rate to optimize per-flow’s FFCT. To ensure the
first frame can be successfully sent out without suffering from
restricted resources (e.g., cwnd and network), the sending
module will configure the init cwnd for trying to adapt to
the parsed FF Size and network conditions. For better pacing
the first frame and avoiding non-trivial packet losses, the
transport cookie (i.e., MaxBW) obtained from the synchro-
nized Hx QoS frame will be leveraged for setting per-flow’s
init pacing, as follows.

init pacing = MaxBW (2)

Meanwhile, the insignificantly-changed MinRTT (that has
been demonstrated in §II-D) can be utilized to compute
bandwidth-delay product (BDP) that will be based to further
adjust the init cwnd value, as follows.

init cwnd = min{FF Size, MaxBW×MinRTT} (3)

Even though we impose limitations on the sending rate, if
there is no window constraint and queuing occurs in the
bottleneck buffer, we would send data exceeding MaxBW
× MinRTT within one RTT, which would prevent the queue
from being emptied and result in significant network latency.
Therefore, Wira adopts a conservative strategy, which enables
init cwnd to be properly configured by fully considering both
the parsed FF Size and actual transmission condition (that can
be depicted by BDP) between the OD pair.

Corner case 1. When the requested live-streaming data
is being delivered to L4, the parsing module might not get
FF Size in time before the first few bytes should have been
sent out. Take the HTTP-FLV protocol as an example, the
FLV header, script data, and audio frame will be delivered
to L4 in turn before the I frame has been pulled. In this
case, the FF Size cannot be gained, causing the init cwnd
will not be successfully configured. To address this issue,
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Wira will temporarily leverage the init cwnd exp to replace
FF Size in Eq. 3 and compute a temporary init cwnd. The
setting of init cwnd exp is user-customized. It can either use
the empirical fixed value (e.g., 10 [36]) or the experimental
value that is computed by conducting specific A/B tests.
For example, we can set the init cwnd exp as the average
FF Size collected from all connections during one week. Our
years of real-world deployment experience demonstrate that
the experimental one is more robust the the fixed value, which
is also set as the baseline in this paper (see §VI). Once the
first-frame parsing is completed, the init cwnd will be updated
to the minimum value of FF Size and BDP.

Corner case 2. When leveraging Hx QoS (i.e., MinRTT
and MaxBW) for parameter initializations, the sending module
will first check the timestamp of the last Hx QoS synchro-
nization. If the time interval T exceeds its threshold ∆, i.e., T
> ∆, the synchronized Hx QoS will become unavailable. In
this paper, the ∆ is set to 60mins unless otherwise declared. In
this case, the init cwnd will be configured to FF Size and the
init pacing can be computed as init pacing = FF Size

init RTT exp ,
where the init RTT exp is an experimental value similar to
init cwnd exp. Specifically, the init RTT exp is set as the
average MinRTT collected from all connections during one
week through A/B tests.

V. IMPLEMENTATION

We implement Wira described in §IV upon NGINX archi-
tecture (with nginx 1.17.3) [37] and user-space QUIC protocol
(with LSQUIC Q043) [38], which acts as an essential compo-
nent for optimizing our provided live-streaming services. Our
implementation consists of 1000+ lines of code.

In this paper, the Wira sender will (i) perform frame
parsing and gain FF Size (§IV-A), (ii) extract and syn-
chronize Hx QoS metrics as transport cookie (§IV-B), and
(iii) initialize both cwnd and pacing rate (§IV-C). Mean-
while, the clients have also upgraded to support Hx QoS can
be synchronized and stored locally, which will be carried
in its CHLO packets when requesting some live-streaming
resource. For frame parsing, we enable a new function
ngx quic send data in nginx to load our developed Wira
parser and then parse frames and obtain FF Size. When the
received frame is incomplete, the newly-introduced function
ngx quic flv parser parse or send will temporarily save
a portion of this frame until frame type and size can be
learned. The obtained FF Size will be delivered to the critical
component, i.e., send controller of LSQUIC. Meanwhile,
the newly implemented function parse hs data can extract
our desired Hx QoS from CHLO packets and pass it to

TABLE I
PARAMETER CONFIGURATIONS OF INIT CWND AND INIT PACING.

Scheme init cwnd init pacing

Baseline init cwnd exp init cwnd/init RTT exp
Wira(FF) FF Size init cwnd/init RTT exp
Wira(Hx) BDP MaxBW

Wira min{FF Size, BDP} MaxBW

send controller. Finally, Send Controller will perform the
initialization for both cwnd and pacing rate based FF Size
and Hx QoS.

VI. REAL-NETWORK EVALUATIONS

This section describes the performed experiment evaluations
that are based on our real-world deployments. As Fig. 10
shows, the proxy server can pull the requested live-streaming
data from our live CDN, and then respond to its clients based
on Wira-powered initialization. In our CDN services, the live-
streaming data is decoded using HTTP-FLV protocol.

Comparison schemes. We select the control policy with
init cwnd = init cwnd exp and init RTT = init RTT exp
(described in §IV-C) as the baseline method instead of
Google recommended init cwnd = 10 [4] or UG-based cwnd
initialization [15] through our real-network A/B tests and
measurements, as follows. (i) The init cwnd = 10 always
incurs unsatisfied FFCT, whose average (and 90th-percentile)
FFCT value is 201.0ms (476.5ms). By contrast, our selected
baseline method can optimize these two values to 158.9ms
and 409.6ms, respectively, which is based on our performed
1000+ A/B tests. (ii) We make large-scale measurements and
find each CDN proxy server (e.g., in Southeast Asia and
Latin America) always serves over 1000 UGs so that it is
unacceptable to run an ML model for each UG. Besides,
we find top 5 UGs serve <30% of live streams, in which
deploying 5 ML models for these UGs can only optimize a
small number of live streams [25]. This reveals that the UG-
based solutions cannot be well-scaled.

To further evaluate FFCT benefits of Wira, we also decouple
the FF Size based cwnd initialization and the Hx QoS en-
abled init pacing configuration from Wira, and then construct
Wira(FF) and Wira(Hx) as two other comparison schemes,
respectively. In this section, the init cwnd and init pacing of
all above comparison schemes are configured as Table I shows.

This paper mainly focuses on exploring more appropriate
initializations of both cwnd and pacing rate, in which we select
the BBR (with version 1) scheme [9] to support the above-
parameter configurations.

The differences in first-frame transmission between 0-
RTT and 1-RTT. When the server and client consume 1 RTT
to establish a connection, the server measures the accurate RTT
and uses it, instead of the configured initial RTT, along with
other initial parameters we have configured to calculate new
values for cwnd and pacing rate. These new values are then
used for transmitting both the first-frame data and subsequent
live-streaming data.
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Fig. 11. The real-network FFCT benefits of all live streams.
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(a) Average FFCT with 0-RTT.
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(c) Average FFCT with 1-RTT.
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Fig. 12. The real-network FFCT benefits of 0- and 1-RTT streams.

On the other hand, when the server and client consume
0 RTT to establish a connection, the server relies entirely
on the initially configured parameters to send some or all of
the first-frame data. It continues to use these parameters until
an accurate RTT or bandwidth measurement is obtained, at
which point it begins updating the sending parameters for the
transmission of unsent data.

A. Overall Performance

The CDN proxy server that deploys Wira has been running
steadily for over 6 months to serve a famous live application.
Fig. 11 depicts the FFCT benefits and optimization ratios of
Wira as well as its two variants, i.e., Wira(FF) and Wira(Hx),
in which we can learn the following results. (i) Wira out-
performs other three schemes, whose average FFCT value
(142.0ms) can be lowered by 10.6% compared to the base-
line (158.9ms), as Fig. 11(a) shows. (ii) Both Wira(FF) and
Wira(Hx) can also introduce FFCT benefits, on average, that
can be optimized by 6.0% and 7.4%, respectively. (iii) Wira
can realize further optimizations for the high-quantile FFCT,
whose 70th- and 90th-percentile value is reduced to 105.6ms
(from 130.0ms) and 341.1ms (from 409.6ms) with the ratios
of 18.7% and 16.7%, respectively, as Fig. 11(b) shows. (iv)
Wira(FF) can obviously optimize the 70th-percentile FFCT
values (with the ratio of 14.7%) while Wira(Hx) mainly reduce
the 90th-percentile FFCT values (with the ratio of 14.1%).
These results demonstrate the practicability and profitability
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Fig. 13. The real-network FFCT benefits under different network conditions.

of our proposed Wira for first-frame optimizations with more
reduced FFCT.

To further explore the FFCT benefits, we classify the current
live streams according to whether their connection establish-
ments belong to 0-RTT that accounts for ∼90% based on our
large-scale measurements. As Fig. 12(a) shows, the average
FFCT (169.0ms) of 0-RTT streams can be lowered to 158.7ms
(6.2%), 156.7ms (7.3%) and 152.9ms (9.5%) by employing
Wira(FF), Wira(Hx) and Wira, respectively. Besides, the 90th-
percentile FFCT can be reduced from 440.3ms (baseline) to
367.4ms (Wira) with a ratio of 16.6%, as Fig. 12(b) shows.
The Hx QoS enabled controls, i.e., Wira(Hx), enable more
optimizations for 90th- and 95th-percentile FFCT values with
the ratio of >14.0%.

Compared to 0-RTT connections, the FFCT values of 1-
RTT connections can be reduced by employing Wira as well
as its decoupled variants. This is because 1-RTT connections
can obtain the accurate MinRTT so that the pacing rate can be
updated to be a more appropriate value before the first frame is
sent out. In Fig. 12(c) and Fig. 12(d), the average FFCT under
1-RTT streams can be optimized by 21.3% from 84.4ms (base-
line) to 66.5ms (Wira), whose 90th-percentile value is lowered
by 32.5% from 180.4ms to 121.8ms. Different from FFCT
benefits under 0-RTT streams, both Wira(FF) and Wira(Hx)
can achieve significant optimizations (7.0% and 17.1%) for the
90th-percentile FFCT. More importantly, we can also discover
that Wira(Hx) always performs better than Wira(FF) under
all, 0-RTT and 1-RTT live streams. This is because Wira(Hx)
can realize the initialization of both cwnd and pacing rate,
in which the init cwnd will be configured to the BDP (i.e.,
MaxBW×MinRTT). By contrast, Wira(FF) mainly focuses on
the init cwnd configuration, without leveraging the obtained
transport cookies for carefully setting its init pacing.

B. Benefits in Different Conditions

Wira can introduce different FFCT benefits under diverse
conditions of both first frames and transmission networks.
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Through real-world deployments of Wira, we can learn the
following observations. (i) Wira can achieve more obvious
optimizations for FFCT when the actual FF Size becomes
larger. For example, FFCT can be only lowered by 4.1% with
the FF Size of (30, 50], which will be reduced by 20.2% (from
211.2ms to 168.6ms) with the FF Size of (80, 150], as Fig.
13(a) shows. (ii) Under larger FF Size, FFCT will benefit from
FF Size enabled cwnd initialization compared to Hx Qos
based init pacing configuration. For example, the FFCT values
of 178.1ms and 196.5ms can be realized by Wira(FF) and
Wira(Hx), respectively. (iii) Within 100ms MinRTT, Wira
can optimize FFCT by 6.6% ∼ 12.7%, which will become
deteriorated when MinRTT > 100ms, as Fig. 13(b) shows.
This is mainly affected by Wira(Hx) whose Hx QoS metrics
(e.g., MinRTT) might become inaccurate, causing more in-
appropriate configuration for init cwnd. (iv) Wira performs
much better in larger-MaxBW conditions compared to under
smaller MaxBW. For example, FFCT can be reduced by
9.4% and 4.9% under the MaxBW of (10Mbps, 20Mbps] and
(20Mbps, 60Mbps], respectively, which will becomes <2.8%
with the MaxBW of (0Mbps, 10Mbps], as Fig. 13(c) shows.
By contrast, Wira(Hx) enabled FFCT optimizations tend to
become worse with larger MaxBW values. (v) When the
retransmission ratio is in (1%, 10%], FFCT can be optimized
by 8.6% ∼ 17.2% while Wira(FF) can keep stable benefits,
i.e., with the ratio of 1.4% ∼ 14.7% under the retransmission
ratio of ∼20%, as Fig. 13(d) shows.

C. First Frame Loss Rate

To better evaluate the performance of Wira, we will next
analyze the first-frame loss rate (FFLR) that is incurred during
traffic transmissions. Fig. 14 depicts the average and 90th-
percentile FFLR when performing real-network deployments.
We can learn Wira can reduce the average FFLR from 8.8%
(baseline) to 6.4% with the optimization ratio of 27.3%.
Besides, the 90th-percentile FFLR can be lowered by the ratio
34.4% from 25.3% (baseline) to 16.6%. For 0-RTT streams,
their FFLR values are significantly lower than the values in
1-RTT streams. This is because 1-RTT streams measure the
accurate RTT during the connection establishment process and
use this value to calculate more accurate sending parameters
(§VI). The average FFLR optimization ratios (that are incurred
by Wira) for 0- and 1-RTT streams have reached 27.6% and
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21.4%, respectively. In addition, for 0- and 1-RTT streams, the
FFLR at the 90th percentile has been optimized by 36.5% and
6.0% respectively. By fully considering the actual transmission
condition between the OD pair (§IV-C), Wira can achieve
obvious optimizations for the first-frame loss rate in various
network environments.

D. Influences on Follow-Up Frame Transmissions.

The proposed Wira introduces negligible influences on
follow-up frame transmissions when lowering the value of
FFCT. In this section, the completion time and loss rate of
the first 1 ∼ 4 video frames will be leveraged to evaluate the
performance of follow-up frame transmissions.

Completion time. The proposed Wira mechanism does not
slow down the transmissions of follow-up video frames. As
Fig. 15 shows, Wira enables the FFCT to be reduced by
16.5ms (from 158.5ms to 142.0ms) while 150.3ms, 151.6ms,
and 157.9ms will be taken for completing the transmissions
of first 2 ∼ 4 frames (since the first live-streaming packet is
sent out), respectively, incurring stable optimization ratios (i.e.,
10.9% ∼ 13.0%) compared to the baseline. Thus, we can learn
the transmission performance (in terms of frame completion
time) of follow-up video frames has not been affected by Wira-
powered first-frame optimizations. In other words, the Wira-
powered FFCT optimizations do not deteriorate the completion
time of follow-up 2 ∼ 4 video frames.

Frame loss rate. Wira does not incur significant congestion
in the transmission network, in which the loss rate of the
follow-up video frames is demonstrated to not deteriorate
when the proposed Wira is employed. As Fig. 15 shows, the
Wira-incurred loss rate of follow-up video frames remains
6.7% ∼ 7.1%, compared to the ratios of 9.0% ∼ 9.2% that
are introduced by baseline. Thus, we can know there is no
significant negative effect on the transmissions of follow-up
frames during Wira-enabled first-frame optimizations.

VII. DISCUSSION

Transport cookie security. The proposed Wira supports
more secure Hx QoS synchronization and acquisition, in
which the Hx QoS frame in Hx QoS packets can be encrypted
using a server-side secret key that can be decrypted only by
traffic server(s). In this case, each client cannot understand its
received transport cookies that can not be easily fabricated as a



non-existent Hx QoS value for either obtaining more efficient
transmissions or launching attacks on the targeted server. Wira
enables its servers to verify the consistency between the sent
and received Hx QoS and then leverage the authentic values
for initializing both cwnd and pacing rate.

First-frame playback conditions. This paper mainly fo-
cuses on the required delay of the first I frame in live streams.
The first-frame playback conditions are related to client-side
policies, which can be configured as (i) the buffered time
length exceeds its threshold (e.g., 3s) or (ii) the amount of
received video and audio frame satisfies its requirements, etc.
Fortunately, the presented Wira can adapt to differentiated
first-frame playback conditions by configuring the number
(NumVF) of parsed video (audio) frames, whose reached
its threshold ΘVF indicates FF Size can be obtained for its
init cwnd initialization.

VIII. RELATED WORK

Initial parameter optimization. To decrease the first-frame
delay of live streaming, the initial transmission parameters are
usually configured for shortening its FFCT. On the one hand,
the initial cwnd of TCP is recommended to be settable, which
is increased from 2 ∼ 4 to 10 segments through large-scale
Internet experiments [3], [4]. Besides, Halfback [5] employs
both larger initial cwnd and other supplementary methods
(e.g., loss recovery) for optimizing short-flow performance.
Further, JumpStart [6] abandons the initial cwnd configuration
by skipping the startup stage and enables transmissions at the
rate they deem appropriate. On the other hand, the initial
sending rate can also be configured for well utilizing the
available bandwidth and mitigating the severe packet losses
caused by traffic bursts at the cold-start phase [7], [8]. This
can be achieved by setting the initial values of both cwnd
and minimum RTT (minRTT), especially for the pacing-based
congestion controls, e.g., BBR [9], TIMELY [10] and Copa
[11]. However, these schemes focus on initializing the fixed
value for one of the sending parameters, which is far away
from enough for FFCT optimizations (§II-A and II-B).

Dynamic parameter adjustment. To further explore better-
performed configurations, several methods leverage machine
learning to achieve dynamic adjustments for the transmission
parameters [14]–[24]. For example, Orca [19] and AUTO [22]
can adaptively determine the global weights when configuring
cwnd and sending rate, respectively. However, they all focus
on the in-process adjustments, ignoring further considerations
for the parameter initialization. NeuroIW [14] enables DRL-
powered selection for initial cwnd values under SDN-based
mobile edge computing (MEC) while TCP-DRL [15] intro-
duces dynamic initial cwnd configurations for each divided
user group. However, these schemes are designed for all (a
set of) connections and can only realize the coarse-grained
transmission controls, which are unable to adapt to diversified
first-frame sizes and differentiated network conditions (§II-A).
Meanwhile, it is hard for frequently-utilized DRL to achieve
more fine-grained (e.g., per-flow) parameter initialization due
to its well-known instability and Heavyweight (§II-C).

Transport signals based optimization. It is well-studied
that some transport signals can be leveraged to assist video-
streaming optimizations [39]. On the one hand, the cross-layer
message can be obtained by the transport layer for constructing
better scheduling policies [40]. For example, both VOXEL
[26] and DTP [27] can parse the received frame types that will
be used for adjusting each packet’s (re)transmission priority.
On the other hand, the historical QoS can also be learned
to configure the newly-established connection [28] [29]. For
example, PCP can use the history for choosing the initial
probe rate [41] while Antelope can predict the most suitable
congestion control mechanism based on IP-related historical
information [42]. Under the observation that Hx QoS with
the same OD pair performs similarly (described in §II-D),
transport signals are fully considered for a more fine-grained
first-frame control paradigm.

IX. CONCLUSION

This paper proposes the first-frame optimization scheme
named Wira, which takes both the first-frame size and his-
torical transmission QoS for initializing per-flow’s control
parameter of live streaming. In particular, Wira supports cross-
layer frame parsing at the transport layer to accurately perceive
the first-frame size that will be leveraged to configure more
appropriate initial cwnd. Besides, a lightweight client-cloud
collaboration is carefully designed, which enables the histori-
cal transmission QoS to be quickly obtained to set the initial
pacing rate, offloading the intolerable sender-side storage over-
head to Wira clients. We implement Wira and evaluate it via
real-world deployments, whose average and 90th-percentile
FFCT values are reduced by 10.6% and 16.7%, respectively.
Currently, the presented Wira has been deployed on our CDN
services [43] and our edge products (named EdgeOne) [44],
one of the world’s largest CDN vendors , serving thousands
of millions of live-streaming users worldwide.
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